• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

abeliano

Dizionario delle Scienze Fisiche (1996)
  • Condividi

abeliano


abeliano [agg. Der. del cognome di N.H. Abel] [ALG] Con il signif. di commutativo: algebra a., gruppo a. (v. gruppo: III 127 f). ◆ [ANM] Funzione a.: funzione che nasce dall'inversione di un integrale a. di prima specie e che gode della proprietà di avere 2p periodi linearmente indipendenti; una tale funzione è detta funzione a. speciale per distinguerla dalle funzioni a. generali, che sono tutte le funzioni di più variabili meromorfe al finito e con 2p periodi linearmente indipendenti (se p=1 si hanno le funzioni ellittiche). ◆ [ANM] Integrale a.: se f(x,y)=0 è l'equazione di una curva algebrica C, è, relativ. a C, ogni integrale del tipo ∫CR(x,y)dx, dove R(x,y) è una funzione razionale di x e y, e y si considera funzione della x attraverso l'equazione f(x,y)=0; tali integrali, che si possono definire anche su una curva spaziale e iperspaziale, si dividono in integrali a. di prima, seconda e terza specie a seconda che presentino, rispettiv., nessuna singolarità oppure soltanto singolarità polari, oppure singolarità logaritmiche: v. Riemann, superfici di: V 5 e. ◆ [ANM] Teoremi a.: lo stesso che teoremi di Abel: v. analisi armonica: I 126 e.

Vedi anche
funzioni meromorfe In matematica, funzioni analitiche a un sol valore di una variabile complessa che in ogni regione limitata del piano complesso non possiedano singolarità oppure possiedano solo singolarità polari. La definizione si estende alle funzioni di più variabili complesse, per le quali le sole singolarità ammesse ... singolarità singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o non sia monovalore (detto più propriamente punto singolare). Le singolarita possono essere puntiformi ... logaritmo Si definisce logaritmo di un numero reale positivo x rispetto alla base a (reale, positiva e diversa da 1) l’esponente y che bisogna attribuire alla base a per ottenere il numero x; il logaritmo di x nella base a si indica con logax. La scrittura y=logax equivale dunque a ay=x; perciò il calcolo del ... integrale In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per la prima volta in uno scritto di G. Bernoulli (1690); le denominazioni di integrale definito e integrale ...
Categorie
  • ALGEBRA in Matematica
  • ANALISI MATEMATICA in Matematica
Vocabolario
abeliano
abeliano agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla...
quadrinòmio
quadrinomio quadrinòmio s. m. e agg. [comp. di quadri- e -nomio di binomio]. – 1. s. m. Polinomio di quattro termini (somma cioè di quattro monomî). 2. agg., non com. Gruppo q. (ted. Vierergruppe), o gruppo di Klein, gruppo di quattro elementi,...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali