• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

base ortogonale

Enciclopedia della Matematica (2013)
  • Condividi

base ortogonale


base ortogonale in algebra lineare, base di uno spazio vettoriale, di dimensione finita e dotato di un prodotto scalare, formata da vettori mutuamente ortogonali, cioè tali che è nullo il prodotto scalare tra coppie di elementi distinti. Si tratta di una generalizzazione del concetto di sistema di riferimento cartesiano esteso a una dimensione n qualsiasi. La terna di vettori v1 = [1 0 0], v2 = [0 1 0], v3 = [0 0 1] è una base ortogonale (o meglio ortonormale in quanto |vi| = 1 per i = 1, 2, 3) per lo spazio vettoriale R3 dotato dell’usuale prodotto scalare. Per il teorema di → Sylvester, ogni spazio vettoriale di dimensione finita, dotato di un prodotto scalare, possiede basi ortogonali.

Vedi anche
ortogonale In geometria elementare si dice di due enti che formano tra loro un angolo retto. fig. 1 ADue rette r, s del piano si dicono o. (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una retta r dello spazio si dice o. (o perpendicolare) a un piano α se incontra il piano in ... risultante Fisica In analisi vettoriale, di un sistema di vettori, liberi o applicati, si dice r. o somma vettoriale il vettore che si ottiene come risultato dell’operazione di composizione. In particolare, il r. di due vettori è la diagonale del parallelogramma costruito sui due vettori (regola del parallelogramma); ... versore Nella scienza e nella tecnica, vettore di modulo unitario, adimensionato, che caratterizza un orientamento (cioè una direzione e un verso): data una retta orientata e staccato su essa un segmento orientato r, il v. della retta vale r/r. Il prodotto di uno scalare v per un v. u dà il vettore v=vu (che ... Erhard Schmidt Matematico (Dorpat 1876 - Berlino 1959); prof. nelle univ. di Zurigo (1908-10), Erlangen (1910-11), Breslau (1911-17), Berlino (1917-50), ha dato fondamentali contributi allo studio delle equazioni integrali. Tra le sue opere: Theorie der linearen und nicht-linearen Integralgleichungen (1907). n Teoria ...
Tag
  • SISTEMA DI RIFERIMENTO CARTESIANO
  • BASE DI UNO SPAZIO VETTORIALE
  • TEOREMA DI → SYLVESTER
  • SPAZIO VETTORIALE
  • PRODOTTO SCALARE
Altri risultati per base ortogonale
  • ortonormale
    Enciclopedia on line
    In matematica si dice di un sistema di vettori che siano a due a due ortogonali e inoltre di lunghezza unitaria, o anche di un sistema di funzioni f1(x), … fn(x), …, in numero finito o infinito, tali che, in un certo intervallo (a, b) dell’asse reale, due qualunque di esse siano ortogonali e inoltre risulti , per ...
Vocabolario
ortogonale
ortogonale agg. [der. del lat. tardo orthogonus «angolo retto», che è dal gr. ὀρϑογώνιος «ad angolo retto», comp. di ὀρϑός «retto» e γωνία «angolo»]. – In geometria elementare, detto di ciascuno dei due enti che formano tra loro un angolo...
ortogonalità
ortogonalita ortogonalità s. f. [der. di ortogonale]. – Condizione di ciò che è ortogonale: dimostrare l’o. di due rette, di due linee. Condizioni di o., le relazioni analitiche che esprimono la condizione affinché due enti siano ortogonali...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali