• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

bilinearita

Enciclopedia della Matematica (2013)
  • Condividi

bilinearita


bilinearità proprietà riguardante un oggetto matematico (tipicamente un elemento di uno spazio vettoriale V su un campo K) che sia sottoposto a un’operazione interna (per esempio, un’addizione tra vettori), una mista (per esempio, il prodotto di uno scalare per un vettore, che dà come risultato ancora un vettore) e una che fornisce un risultato esterno all’ambiente operativo (per esempio, il prodotto scalare tra vettori, che dà come risultato uno scalare). L’espressione matematica è bilineare se è lineare, cioè si scioglie distributivamente, rispetto a ognuna delle variabili in gioco. Formalmente, dati i vettori u, v, w e uno scalare k appartenente al campo K, vale la proprietà di bilinearità se, per ogni u, v, w ∈ V e ogni k ∈ K, valgono:

• u · (v + w) = u · v + u · w

• (u + v) · w = u · w + v · w

• u · (kv) = k(u · v)

• (ku) · v = k(u · v)

Vedi anche
ortogonale In geometria elementare si dice di due enti che formano tra loro un angolo retto. fig. 1 ADue rette r, s del piano si dicono o. (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una retta r dello spazio si dice o. (o perpendicolare) a un piano α se incontra il piano in ... matrice Anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia e della lunula, e alla cui opacità è dovuto il colorito biancastro di quest’ultima. M. del ... proprietà commutativa In matematica, si dice che un’operazione binaria gode della proprietà c. se è tale che a R b=b R a, dove R è il simbolo dell’operazione e a, b gli elementi su cui si opera. Tale proprietà c. vale, per es., per l’addizione e per il prodotto ordinario: se a e b sono numeri reali (in partic., frazioni o ... gruppo simplettico In matematica, il gruppo costituito dalle matrici s. di ordine 2n (simbolo Sp2n). Una matrice A di ordine 2n si chiama s. se risulta A*J=JA–1, ove J è la matrice di ordine 2n formata da n blocchi (01 –10) situati lungo la diagonale principale e A*, A–1 sono rispettivamente le matrici trasposta e inversa ...
Tag
  • OPERAZIONE INTERNA
  • SPAZIO VETTORIALE
  • MATEMATICA
  • CAMPO
Altri risultati per bilinearita
  • bilineare
    Dizionario delle Scienze Fisiche (1996)
    bilineare [agg. Comp. di bi- e lineare "doppiamente lineare"] [ALG] Applicazione b.: se A, B, C sono spazi vettoriali sullo stesso campo K, è un'applicazione f di A╳B in C tale che, per ogni y∈B, l'applicazione f(x,y) risulta lineare di A in C e, inoltre, per ogni x∈A, l'applicazione f(x,y) risulta ...
Vocabolario
bilinearità
bilinearita bilinearità s. f. [der. di bilineare]. – In matematica, caso particolare di plurilinearità riferita a due soli spazî lineari.
bilineare
bilineare agg. [comp. di bi- e lineare1]. – In matematica, detto di un polinomio plurilineare rispetto a due serie di variabili; con altro sign., corrispondenza b., lo stesso che bilinearità.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali