• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

combinazione lineare

Enciclopedia della Matematica (2013)
  • Condividi

combinazione lineare


combinazione lineare in algebra, per n elementi e1, e2, ..., en, espressione del tipo k1e1 + k2e2 + ... + knen dove k1, k2, ..., kn, detti coefficienti, sono elementi di un corpo K. Il termine è riferibile a più contesti: per esempio, combinazione lineare di funzioni, di matrici ecc. In algebra lineare si definisce combinazione lineare di n vettori v1, v2, ..., vn di uno spazio vettoriale V su un campo K ogni vettore del tipo a1v1 + a2v2, + ... + an vn, dove a1, a2, ..., an sono scalari, cioè elementi del campo K. Tali scalari, detti coefficienti della combinazione lineare, possono essere scelti in modo del tutto arbitrario. Gli n vettori si dicono linearmente indipendenti se l’unica loro combinazione lineare uguale al vettore nullo è quella con tutti i coefficienti nulli, linearmente dipendenti in caso contrario. La dipendenza lineare di vettori segnala un particolare legame geometrico: due vettori in Rn sono per esempio linearmente dipendenti se e solo se sono paralleli.

Vedi anche
determinante Biologia Termine introdotto da A. Weismann per indicare presunti aggregati di molecole contenuti nel nucleo delle cellule sessuali e che conterrebbero i fattori per la determinazione delle cellule. In immunologia, d. antigenico, sito dell’antigene contro cui è diretta la specificità di un anticorpo; ... risultante Fisica In analisi vettoriale, di un sistema di vettori, liberi o applicati, si dice r. o somma vettoriale il vettore che si ottiene come risultato dell’operazione di composizione. In particolare, il r. di due vettori è la diagonale del parallelogramma costruito sui due vettori (regola del parallelogramma); ... derivata tab.Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, o anche, in economia, il prodotto ottenuto al variare della quantità di fattori di produzione ... serie Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere. Ecologia Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione sono dette stadi seriali, quella terminale stabile è chiamata climax (➔). Poiché il climax varia ...
Tag
  • LINEARMENTE INDIPENDENTI
  • SPAZIO VETTORIALE
  • ALGEBRA LINEARE
  • VETTORI
Vocabolario
combinatóre
combinatore combinatóre s. m. e agg. [der. di combinare]. – 1. s. m. (f. -trice) Chi combina: le idee più alte e generose ... che i temperati e rassegnati c. di sistemi chiamavano utopie (Carducci); scherz., sei soltanto un c. (o una c.)...
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali