• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

congruenza modulo n

Enciclopedia della Matematica (2013)
  • Condividi

congruenza modulo n


congruenza modulo n in algebra, relazione di equivalenza definita sull’insieme dei numeri interi Z come segue: se n è un fissato numero intero maggiore di 1, due interi a e b sono detti congruenti modulo n se n divide la differenza a − b. Si scrive a ≡ b (mod n) e si legge: a congruo b modulo n; n è detto modulo della congruenza. In modo equivalente: a ≡ b (mod n) se a e b danno lo stesso resto nella divisione intera per n. Per esempio, 22 ≡ 7 (mod 5) perché entrambi danno resto 2 nella divisione intera per 5. Mediante tale relazione, l’insieme Z risulta partizionato in n classi di equivalenza, dette in questo caso classi resto modulo n o anche classi di congruenza modulo n, ciascuna contenente tutti i numeri congrui tra loro modulo n: due interi appartengono alla stessa classe resto se e solo se sono congruenti modulo n. Se, come nell’esempio, il modulo è 5, si vengono così a formare cinque classi (tante quanti sono i possibili resti nella divisione per 5) così indicate: [0], [1], [2], [3], [4]. Per stabilire a quale classe appartiene un numero intero lo si divide per n: se il numero è positivo, il resto indica la classe, se esso è negativo, la classe è uguale alla somma del resto con n. L’insieme delle classi di congruenza modulo n, vale a dire il quoziente di Z rispetto alla relazione di congruenza modulo n, è indicato con il simbolo Zn; esso eredita da Z le operazioni di addizione e moltiplicazione e acquisisce così la struttura di anello. Dotato di questa struttura, esso è detto l’anello delle classi resto modulo n (→ Zn, insieme delle classi resto modulo n).

Vedi anche
numero Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti un insieme. Matematica Nell’uso comune i n. sono adoperati: a) per indicare il posto occupato ... aritmetica Matematica Parte della matematica che riguarda lo studio dei numeri, in particolare dei numeri interi. Il termine fu usato per la prima volta dai pitagorici, per indicare la scienza astratta dei numeri, contrapposto a λογιστική (logistica), che era invece la parte pratica del calcolo numerico: ma nell’uso ... modulo Architettura Misura convenzionale che stabilisce il rapporto fra le varie parti di un edificio e una unità base di misura. Nell’architettura dell’età classica greca e romana l’unità base della composizione architettonica solitamente è il diametro della colonna nella sua parte più bassa (imoscapo); da ... polinomio In matematica, somma di monomi (in senso proprio, solo con riferimento a monomi interi), detti termini del p.: binomio, trinomio, quadrinomio ecc., è un polinomio rispettivamente di 2, 3, 4 ecc. termini; coefficienti di un p. sono i coefficienti dei suoi monomi; grado di un p. rispetto a una lettera ...
Tag
  • RELAZIONE DI EQUIVALENZA
  • DIVISIONE INTERA
  • NUMERI INTERI
  • CLASSE RESTO
  • SE E SOLO SE
Altri risultati per congruenza modulo n
  • modulari, sostituzioni
    Enciclopedia on line
    In matematica, le sostituzioni lineari su una variabile complessa z=x+iy espresse dalla formula z′=(αz+β)/(γz+δ), ove α, β, γ, δ sono numeri interi ed è αδ−βγ=1; si tratta perciò di particolari affinità circolari di Möbius (➔ affinità), che ricevono l’attributo di unimodulari o brevemente modulari in ...
  • congruenza
    Enciclopedia on line
    Nella geometria elementare, sinonimo di uguaglianza (➔) diretta, cioè di sovrapponibilità. Nella teoria dei numeri, relazione di due numeri interi relativi a, b tali che la differenza a−b è divisibile per un numero intero positivo m (detto modulo di una c.); essa si scrive a≡b (mod. m) e si legge: ...
  • congruenza
    Enciclopedia della Scienza e della Tecnica (2008)
    Luca Tomassini Relazione tra due elementi dell’insieme ℤ dei numeri interi relativi (cioè positivi, negativi o nulli) a e b della forma a=b+mk, con m,k∈ℤ rispettivamente fissato e arbitrario. In altri termini, la differenza a−b deve essere divisibile per un intero positivo m, chiamato modulo della ...
  • congruenza
    Dizionario delle Scienze Fisiche (1996)
    congruènza [Der. di congruente] [LSF] Corrispondenza fra due o più cose. ◆ [ALG] C. di numeri: relazione fra due numeri relativi interi a e b, tali che la differenza a-b è divisibile per un numero intero m, detto modulo della c.; si scrive a=b (mod m) e si legge "a congruo (o congruente) a b modulo ...
Vocabolario
congrüènza
congruenza congrüènza s. f. [dal lat. congruentia, der. di congruens -entis: v. congruente]. – 1. Convenienza, corrispondenza, proporzione fra due cose: non c’è molta c. tra quello che dice e quello che fa. 2. Con accezioni partic. in matematica:...
mòdulo
modulo mòdulo s. m. [dal lat. modŭlus, dim. di modus «misura»]. – In genere, misura, forma, esemplare, che si assume come modello a cui attenersi, o come elemento fondamentale secondo il quale determinare o proporzionare le misure di un...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali