continuo 2
contìnuo2 [s.m. dall'agg. continuo] [ALG] Lo stesso che c. aritmetico o c. geometrico quando la mancanza di qualificazione non dà luogo a equivoci (v. oltre). ◆ [MCC] Lo stesso che sistema materiale c.: → continuo1. ◆ [ALG] C. aritmetico: l'insieme dei numeri reali. ◆ [EMG] C. elettromagnetico: sistema materiale c. sede di campi elettromagnetici: v. meccanica dei continui: III 691 c. ◆ [ALG] C. geometrico: l'insieme dei punti della retta. ◆ [MCC] C. polare, micropolare e micromorfo: v. meccanica dei continui: III 690 f sgg. ◆ [MCC] C. semplice: v. meccanica dei continui: III 689 d. ◆ [MCS] Approssimazione del c.: la descrizione della meccanica statistica che si ha quando si considera lo spazio delle fasi come un continuo invece che come un insieme di cellette: v. meccanica statistica: III 723 c. ◆ [ALG] Geometria del c.: denomin. data in passato alla topologia. ◆ [ALG] Ipotesi del c.: v. oltre. ◆ [ALG] Potenza del c.: la potenza dell'insieme dei numeri reali (cioè il numero cardinale dei suoi elementi) e di ogni insieme i cui elementi possono essere messi in corrispondenza biunivoca con quelli (per es., i punti di una retta, di un segmento, o anche di un quadrato o di un cubo). G. Cantor ha dimostrato che la potenza del c. è maggiore di quella del numerabile (←), e ha supposto che non ci fossero potenze intermedie (ipotesi del c.); in realtà, P. Cohen nel 1963 ha dimostrato che possono costruirsi due matematiche: una cantoriana, che accetta come postulato l'ipotesi cantoriana del c., e una non cantoriana, che nega tale ipotesi.