funtore
funtóre [Der. del lat. functor -oris, dal part. pass. functus del lat. fungi "fungere", e quindi "che funge da, che adempie una funzione"] [ALG] Corrispondenza tra categorie (→ categoria) che preserva la struttura delle stesse. Precis., si consideri una trasformazione di una categoria C in un'altra categoria D, definita da una coppia di funzioni, siano φ e ψ (appunto f.), tali che: (a) se A, B,... indicano oggetti di C, φ(A), φ(B)... sono oggetti ben determinati di D; (b) se f, g,... sono morfismi di C, ψ(f), ψ(g)... sono morfismi di D; (c) se f: A→B è un morfismo di C avente come oggetti originale e terminale rispettiv. A e B, deve risultare ψ(f):φ(A)→φ(B), oppure ψ(f):φ(B)→φ(A); (d) il f. (φ,ψ) conserva gli elementi neutri e la moltiplicazione fra morfismi (oppure la inverte). A seconda che si abbia o no scambio degli oggetti originale e terminale si dice che il f. è, rispettiv., contravariante oppure covariante: v. algebra: I 91 f.