• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

funzione subarmonica

Enciclopedia della Matematica (2017)
  • Condividi

funzione subarmonica


funzione subarmonica in un insieme Ω ⊆ Rn, funzione u che soddisfa la disuguaglianza −∆u ≤ 0 dove ∆ è l’operatore di Laplace (→ laplaciano). Il nome deriva dal fatto che se u è subarmonica e ν è armonica in Ω, e le due funzioni assumono lo stesso valore sul bordo ∂Ω di Ω, allora u ≤ v in Ω. Questo risultato è conseguenza di un teorema (principio del massimo) secondo cui una funzione u, subarmonica in Ω e continua in Ω̅, assume il massimo sulla frontiera ∂Ω di Ω. Per esempio, per n = 1 e Ω = (a, b), una funzione u(x), continua in [a, b], è subarmonica se u″(x) ≥ 0; in tal caso, u volge la concavità verso l’alto, e assume il massimo in uno dei due estremi a o b; il suo grafico sta al di sotto di quello della corda congiungente i punti (a, u(a)) e (b, u(b)), che è il grafico di una funzione armonica.

Vedi anche
estremante In matematica, per una funzione, l’e. è un punto del suo campo di definizione, in corrispondenza del quale si ha un massimo o un minimo (un estremo) per la funzione. L’e. si chiamerà relativo o assoluto se tale è l’estremo. Analoga definizione vale per un funzionale: in quest’ultimo caso si parlerà non ... frontiera Linea di confine (o anche, spesso, zona di confine, concepita come una stretta striscia di territorio che sta a ridosso del confine), soprattutto in quanto ufficialmente delimitata e riconosciuta, e dotata, in più casi, di opportuni sistemi difensivi. In senso figurato, linea che separa nettamente ambienti ... applicazione Matematica Il concetto di a. è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di a. di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento di Q, mentre un elemento ...
Tag
  • GRAFICO DI UNA FUNZIONE
  • OPERATORE DI LAPLACE
  • FUNZIONE ARMONICA
Vocabolario
subarmònica
subarmonica subarmònica s. f. [comp. di sub- e armonica]. – In elettronica, lo stesso che sottoarmonica.
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali