• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

gruppo ciclico

Enciclopedia della Matematica (2013)
  • Condividi

gruppo ciclico


gruppo ciclico gruppo in cui ogni elemento può essere ottenuto come potenza di un suo elemento g, detto generatore del gruppo. Un gruppo ciclico è abeliano e ogni suo sottogruppo è ciclico; dato un elemento g ∈ G, il minimo intero n, se esiste, per il quale gn è uguale all’elemento neutro del gruppo è detto ordine di g; se tale numero non esiste g ha ordine infinito. Se G è un gruppo finito di ordine n e se p è un numero primo che divide n, allora esiste in G un elemento di ordine p (teorema di Cauchy). Da ciò segue che ogni gruppo finito il cui ordine sia un numero primo è necessariamente ciclico.

Un gruppo ciclico infinito è isomorfo al gruppo Zn(+) dei numeri interi con l’operazione di addizione e 1 ne è il generatore. Un gruppo ciclico finito di ordine n è isomorfo al gruppo Zn delle classi resto modulo n e ogni suo elemento m coprimo con n può essere un suo generatore; per esempio in Z4 = {0, 1, 2, 3} con l’operazione ⊕ di addizione ciclica, l’elemento 3 è un generatore perché addizionato a sé stesso più volte ne fornisce tutti gli elementi:

formula

Vedi anche
sottogruppo In matematica, insieme H di elementi di un gruppo G, tale che, mediante l’operazione di composizione definita in G, costituisce a sua volta un gruppo. In altre parole, H è s. di G se il ‘prodotto’ di due elementi qualunque di H, eseguito con la regola valida in G, è un elemento di H e se, insieme con ... congruenza Nella geometria elementare, sinonimo di uguaglianza (➔) diretta, cioè di sovrapponibilità. Nella teoria dei numeri, relazione di due numeri interi relativi a, b tali che la differenza a−b è divisibile per un numero intero positivo m (detto modulo di una c.); essa si scrive a≡b (mod. m) e si legge: «a ... gruppo simplettico In matematica, il gruppo costituito dalle matrici s. di ordine 2n (simbolo Sp2n). Una matrice A di ordine 2n si chiama s. se risulta A*J=JA–1, ove J è la matrice di ordine 2n formata da n blocchi (01 –10) situati lungo la diagonale principale e A*, A–1 sono rispettivamente le matrici trasposta e inversa ... isomorfismo In matematica, corrispondenza biunivoca tra due insiemi dotati di ‘strutture’, la quale conservi le strutture stesse. Le strutture sono di tre tipi: d’ordine, algebriche e topologiche, e si hanno perciò tre diversi tipi di isomorfismi. I. tra insiemi dotati di strutture d’ordine (i. d’ordine) Si tratta ...
Tag
  • TEOREMA DI CAUCHY
  • ELEMENTO NEUTRO
  • NUMERI INTERI
  • NUMERO PRIMO
  • CLASSI RESTO
Vocabolario
cìclico
ciclico cìclico agg. [dal lat. cyclĭcus, gr. κυκλικός, der. di κύκλος «cerchio»] (pl. m. -ci). – Propriam., relativo al cerchio, o più esattamente a un ciclo inteso nel suo sign. più generale di linea chiusa, ente chiuso in sé stesso; per...
ciclicità
ciclicita ciclicità s. f. [der. di ciclico]. – Carattere di ciò che si svolge con andamento ciclico.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali