• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

gruppo di Lie

di Luca Tomassini - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

gruppo di Lie

Luca Tomassini

Un gruppo G sul quale sia definita una struttura di varietà analitica tale che la mappa μ:(x,y)→xy−1 dal prodotto diretto G×G in G stesso sia analitica. In altre parole, un gruppo di Lie è un insieme dotato delle strutture tra loro compatibili di gruppo e varità analitica. Un gruppo di Lie è detto reale, complessso o p-adico a seconda del campo sul quale si considera la varietà analitica che lo definisce. Ogni gruppo di Lie complesso è dotato naturalmente della struttura di gruppo di Lie reale per semplice restrizione del campo complesso. Il principali esempi di gruppo di Lie sono quelli del gruppo lineare generale GL(n,ℝ) sul campo dei numeri reali ℝ e i suoi sottogruppi chiusi nella topologia euclidea naturale. Non a caso, tali gruppi furono originariamente introdotti da Sophus Lie come gruppi di trasformazioni locali dello spazio euclideo n-dimensionale ℝn dipendenti analiticamente da un insieme finito di parametri, con la richiesta addizionale che i parametri di un prodotto fossero esprimibili in termini dei parametri dei fattori per mezzo di funzioni analitiche. La sostituzione dell’analiticità con ipotesi più deboli (per es., la differenziabilità) non conduce ad alcuna estensione della classe dei gruppi di Lie. È questo il contenuto del famoso quinto problema di Hilbert, risolto affermativamente da Andrew M. Gleason, Dean Montgomery e Leo Zippin: se G è una varietà topologica n-dimensionale e la mappa μ:(x,y)→xy−1 è semplicemente continua esiste su G una struttura di varietà analitica rispetto alla quale G è un gruppo di Lie. Il principale metodo di studio nella teoria dei gruppi di Lie è il metodo infinitesimale introdotto da Lie medesimo. Tale approccio permette di ridurre quasi completamente lo studio di un oggetto complicato come un gruppo di Lie G a quello di un oggetto algebrico, la sua algebra di Lie g. Questa è costruita come segue. Per g∈G, un campo vettoriale X(g) su G (visto come varietà) invariante a sinistra è un campo vettoriale invariante per i differenziali della traslazione a sinistra. Più precisamente (dLh)X(g)=X(hg) per ogni g,h∈G, dove Lh(g)=hg. Tali campi invarianti formano uno spazio vettoriale, che può essere identificato con lo spazio tangente alla varietà G nell’identità e, Te(G). Dotato del prodotto di Lie [X,Y]=XY−YX esso diviene un’algebra. Localmente (ovvero in un intorno dell’identità), è possibile allora ricostruire il gruppo G tramite la mappa esponenziale exp: g G.

→ Algebra

Vedi anche
Sophus Lie Matematico norvegese (Nordfjordeid, Sogn og Fjordase, 1842 - Cristiania 1899). Docente presso le università di Cristiania e di Lipsia, collaboratore e amico di F. Klein, è noto soprattutto per aver elaborato una teoria dei gruppi di trasformazione, detti gruppi di Lie, Sophus, applicandola alle equazioni ... nilpotente In algebra, elemento di un anello (o di un’algebra) se esso è diverso dall’elemento nullo, e tuttavia dà luogo a tale elemento quando venga elevato a un’opportuna potenza; con significati analoghi si riferisce anche a gruppi e algebre di Lie. In particolare, un gruppo finito è nilpotente se è esprimibile ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. 1. Cenni storici 1.1 L’antichità. - L’origine della geometria è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente ... gruppo simplettico In matematica, il gruppo costituito dalle matrici simplettico, gruppo di ordine 2n (simbolo Sp2n). Una matrice A di ordine 2n si chiama simplettico, gruppo se risulta A*J=JA–1, ove J è la matrice di ordine 2n formata da n blocchi (01 –10) situati lungo la diagonale principale e A*, A–1 sono rispettivamente ...
Categorie
  • ALGEBRA in Matematica
  • ANALISI MATEMATICA in Matematica
Tag
  • SPAZIO VETTORIALE
  • VARIETÀ ANALITICA
  • CAMPO VETTORIALE
  • SPAZIO EUCLIDEO
  • CAMPO COMPLESSO
Altri risultati per gruppo di Lie
  • Lie, gruppo di
    Enciclopedia della Matematica (2013)
    Lie, gruppo di varietà differenziabile che soddisfa gli assiomi di → gruppo, compatibilmente con la struttura di varietà differenziabile, vale a dire in modo che le operazioni di gruppo siano continue rispetto alla sua struttura differenziabile (→ continuità). Per esempio, la retta reale R è un gruppo ...
Vocabolario
Gruppo di Visegrad
Gruppo di Visegrad (gruppo di Visegrad, Gruppo di Visegrád) loc. s.le m. Insieme di Stati dell’Europa centro-orientale, appartenenti all'ex blocco sovietico (Polonia, Ungheria, Cecoslovacchia; quest'ultima poi scissasi in Repubblica Ceca...
gruppo di acquisto solidale
gruppo di acquisto solidale loc. s.le m. Gruppo di persone che si organizza per acquistare insieme all’ingrosso prodotti alimentari o di uso comune, seguendo i principi di equità e solidarietà, con un atteggiamento critico nei confronti...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali