• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Julia, insieme di

Enciclopedia della Matematica (2013)
  • Condividi

Julia, insieme di


Julia, insieme di oggetto della geometria frattale definito nel modo che segue. Fissato il valore c di un parametro complesso, sia w un punto del piano complesso, a partire dal quale si costruisce la successione ricorsiva:

formula

L’insieme di Julia, relativo al punto c, è l’insieme di tutti i punti w per i quali zn non tende all’infinito. Al variare del parametro complesso c si hanno tutti i diversi insiemi di Julia. Il complementare di un insieme di Julia in campo complesso è detto polvere di Fatou. Gli insiemi di Julia possono risultare connessi o non connessi. L’insieme dei punti c del piano complesso che corrispondono a insiemi di Julia connessi è detto insieme di Mandelbrot. Se c non appartiene a tale insieme, il corrispondente insieme di Julia è omeomorfo alla polvere di Cantor.

Vedi anche
frattale figIn matematica, termine coniato nel 1975 dal matematico francese B. Mandelbrot per indicare un particolare ente geometrico la cui forma è invariante nel cambiamento della scala delle lunghezze (proprietà di invarianza di scala): successivi ingrandimenti di piccole regioni dell’oggetto mostrano sempre ... Pierre-Joseph-Louis Fatou Matematico e astronomo francese (Lorient 1878 - Pornichet, Loire-Inférieure, 1929); lavorò all'osservatorio di Parigi. Oltre che per le sue ricerche di astronomia, è noto per i lavori di analisi, in partic. sulla teoria delle funzioni automorfe. omeomorfismo In matematica, corrispondenza biunivoca e bicontinua tra due spazi topologici S e S′, tale cioè che: a) a ogni punto P di S associ uno e un sol punto P′ di S′ e viceversa (corrispondenza biunivoca); b) fissato a piacere un intorno I′ di un qualunque punto P′ di S′, esista un intorno I del punto P corrispondente ... punto Matematica Insieme alla retta e al piano, uno degli enti fondamentali della geometria, la cui nozione intuitiva corrisponde all’idea di una posizione sulla retta, nel piano o nello spazio (si tratta cioè di una figura non scomponibile in parti e priva di dimensioni); nella geometria euclidea, la nozione, ...
Tag
  • COMPLEMENTARE DI UN INSIEME
  • INSIEME DI MANDELBROT
  • GEOMETRIA FRATTALE
  • INSIEME DI JULIA
  • PIANO COMPLESSO
Vocabolario
insième
insieme insième (ant. insème) avv. e s. m. [lat. ĭnsĕmul, rifatto nel lat. volg. in *insĕmel per sostituzione di semel «una volta» a simul «insieme»]. – 1. avv. Esprime in genere i seguenti rapporti: a. Compagnia, unione: siamo usciti i....
insiememénte
insiememente insiememénte avv. [der. di insieme], ant. – Insieme: né fu una bara sola quella che due o tre [cadaveri] ne portò i. (Boccaccio).
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali