• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

matematica finanziaria

Dizionario di Economia e Finanza (2012)
  • Condividi

matematica finanziaria


Branca della matematica che si pone fra la m. applicata e la teoria della finanza (➔ finanza p).

Prima fase di sviluppo della disciplina

Fino alla prima metà del 20° sec., la m. f. si occupò prevalentemente delle applicazioni della m. alla finanza in ambito certo, lasciando alla m. attuariale (➔) l’analisi delle situazioni aleatorie, riguardanti perlopiù questioni assicurative. Gli argomenti trattati includevano: le operazioni f. elementari di prestito (capitalizzazione) e di sconto; lo studio delle leggi e dei regimi f. principali (regime dell’interesse semplice, dell’interesse composto, esponenziale, dello sconto commerciale, dello sconto razionale) e delle loro proprietà; le operazioni f. complesse, con particolare riguardo alle operazioni di rendita e al calcolo dei rispettivi montanti e valori attuali; gli ammortamenti dei debiti; le problematiche riguardanti emissioni obbligazionarie; la valutazione di progetti di investimento mediante i criteri del valore attuale netto (➔ valore attuale) e del tasso interno di rendimento (➔).

I progressi della seconda metà del Novecento

Il campo d’azione della m. f. si ampliò notevolmente a partire dalla metà del 20° sec., sia nei contenuti sia negli strumenti di analisi, per effetto del riconoscimento del ruolo centrale dell’incertezza (➔) in tutti gli aspetti economici e finanziari. Pionieri di questa impostazione furono, in modo indipendente, B. de Finetti (➔) e H. Markowitz (➔), con l’introduzione di metodologie di analisi integrata di rendimento e rischiosità di portafogli, rispettivamente assicurativi e finanziari. L’analisi di Markowitz si giovò di raffinate tecniche di ottimizzazione vincolata (➔ Kuhn-Tucker, condizioni di), che ebbero da allora un ruolo sempre più significativo nella matematica finanziaria. Nel giro di pochi anni, la teoria di Markowitz divenne la base microeconomica di un ragionamento più articolato sugli equilibri macro dei mercati finanziari e sul collegamento fra rendimento atteso e rischiosità delle attività finanziarie. Ciò permise di scoprire nuove misure di rischiosità (il coefficiente beta) di attività f. singole e di portafogli e di inserire nel discorso riflessioni sul ruolo della correlazione fra titoli nella valutazione della rischiosità di portafogli; consentì inoltre di definire con precisione e misurare il prezzo di equilibrio del rischio. Il passaggio dalla m. f. classica in ambiente non rischioso (in cui conta esclusivamente il tasso di interesse come prezzo del tempo) alla m. f. moderna (in cui al prezzo del tempo si somma il prezzo del rischio) era compiuto.

Sviluppi successivi

Passi avanti ulteriori furono determinati dall’applicazione di strumenti di calcolo sempre più sofisticati in una cornice in cui si passava da modelli di ottimizzazione statica (uniperiodale) all’ottimizzazione dinamica aleatoria in tempo continuo. Pioniere degli avanzamenti in questa direzione, con l’applicazione di principi di ottimizzazione dinamica aleatoria, che fondevano il principio di ottimalità di R.E. Bellman (➔) e il calcolo stocastico di K. Itō (➔), fu, negli anni 1970, R. Merton (➔), premio Nobel dell’economia.

La consuetudine a trattare i problemi aleatori in un ambiente continuo fu la spinta per modellare il mercato finanziario (o un suo segmento) come un processo stocastico multidimensionale adattato all’informazione generata da una opportuna filtrazione (➔). Il rifiuto di situazioni che consentivano arbitraggi non rischiosi, ossia extrarendimenti (rispetto al tasso di interesse risk free) in assenza di rischio, permise di imporre condizioni stringenti all’evoluzione aleatoria dei prezzi e diede vita a un altro formidabile avanzamento teorico, dovuto allo stesso Merton e a F. Black e M. Scholes (➔ Black-Scholes, formula di): il prezzo per assenza di arbitraggio (arbitrage free pricing) di attività derivate (in particolare di opzioni put e call europee, ➔ put option; call option). Esso era ottenuto imponendo che un’attività localmente replicabile da una combinazione (portafoglio) di due o più altre (nel senso che localmente, qualunque sia l’informazione che arriva, abbia lo stesso rendimento del portafoglio), deve condividere con il portafoglio replicante anche il prezzo.

Fu l’inizio di una inarrestabile valanga di variazioni teoriche sul tema e anche di applicazioni pratiche sempre più sofisticate. Fra i contributi teorici vanno segnalate la teoria delle trasformazioni di misura e l’applicazione di processi aleatori a traiettorie non continue (con componenti di salto). La teoria delle trasformazioni ha riconciliato l’eleganza e la maneggevolezza computazionale del criterio di valutazione del valore medio (speranza matematica) con la realistica presa d’atto che in un mondo di soggetti avversi al rischio questo va rimunerato in eccesso rispetto al prezzo del tempo. Sotto certe condizioni è possibile operare sullo spazio di probabilità in modo tale da trasformare il mondo reale in un mondo virtuale (detto neutrale al rischio) nel quale tutte le attività seguono processi aleatori di submartingala finanziaria (➔ martingala), il cui rendimento atteso cioè è pari a quello dell’attività non rischiosa e il cui prezzo corrente è dunque il valore attuale atteso del prezzo futuro.

Problematiche

La capacità della tecnologia f. di definire regole semplici (anche se basate su tecnologie estremamente sofisticate) e apparentemente irrefutabili di calcolo dei prezzi delle attività f. più complicate e cervellotiche ha consentito di ampliare i mercati f., coinvolgendo una massa sempre più ampia di risparmiatori, incoraggiati da questa pretesa oggettività. La crisi del 2007-08 ha dimostrato che molti di questi calcoli erano basati su ipotesi eroiche o sottovalutavano gravemente la probabilità di eventi estremi o la possibilità di errori nelle stime dei dati o nel modello utilizzato per i prezzamenti. Ne sono derivate conseguenze disastrose non solo per singoli o gruppi ristretti di investitori, ma anche per istituzioni finanziarie ritenute solidissime e addirittura con inquietanti prospettive di contagio di intere economie, attraverso il canale della sfiducia nella solidità del sistema finanziario. Non è esagerato dire che la moderna m. f. svolge all’inizio del 21° sec. il ruolo che la fisica nucleare ebbe nella prima metà del secolo precedente.

Vedi anche
montante araldica Attributo di una figura. economia In matematica finanziaria, la somma del capitale impiegato e degli interessi maturati. montante di una rendita è il valore della rendita alla scadenza dell’ultimo periodo della rendita stessa, quando questa sia temporanea (➔ rendita). tecnica Nelle costruzioni, ... Bruno De Finétti De Finétti, Bruno. - Matematico italiano (Innsbruck 1906 - Roma 1985); prof. (dal 1939) di matematica finanziaria all'univ. di Trieste; poi (dal 1954) di matematica attuariale e quindi (dal 1961) di calcolo delle probabilità nell'univ. di Roma. Ha ottenuto risultati di rilievo, che esprimono sempre punti ... economìa polìtica economìa polìtica Scienza che studia l'attività umana nella sfera dei rapporti economici. L'economia politicap. si distingue tra macroeconomia politica, che studia le relazioni che intercorrono tra quantità globali o grandi aggregati (reddito nazionale, investimenti, risparmio), e microeconomia politica, ... equazione matematica 1. Definizioni Si chiama equazione un’uguaglianza tra due espressioni contenenti una o più variabili ovvero una o più funzioni o anche enti di natura più generale ( incognite dell’equazione); se essa è soddisfatta, qualunque sia la determinazione delle variabili o delle funzioni o degli enti ...
Indice
  • 1 Prima fase di sviluppo della disciplina
  • 2 I progressi della seconda metà del Novecento
  • 3 Sviluppi successivi
  • 4 Problematiche
Tag
  • PROCESSO STOCASTICO
  • MERCATO FINANZIARIO
  • AMMORTAMENTI
Altri risultati per matematica finanziaria
  • matematica finanziaria
    Enciclopedia della Matematica (2013)
    matematica finanziaria settore della matematica che studia i procedimenti di calcolo relativi alle operazioni finanziarie, cioè alle relazioni tra un capitale monetario in diversi tempi di acquisizione o beneficio. Teoricamente, la matematica finanziaria non si occupa di eventi aleatori (quali per esempio ...
  • finanziaria, matematica
    Enciclopedia on line
    Teoria matematica della capitalizzazione e attualizzazione; ha come fondamento il fatto che nell’economia mercantile il capitale produce un interesse. Cenni generali Per mezzo di funzioni di capitalizzazione e attualizzazione vengono formalizzati criteri di valutazione nell’impiego di capitali e in ...
  • Matematica finanziaria
    Enciclopedia Italiana - VII Appendice (2007)
    Marco Papi Nel corso degli ultimi anni la matematica finanziaria si è notevolmente ampliata nei contenuti e negli strumenti d'analisi. La motivazione di ciò è riconducibile al riconoscimento del ruolo centrale dell'incertezza in tutti gli aspetti economici e finanziari. La visione stocastica della ...
  • FINANZIARIA, MATEMATICA
    Enciclopedia Italiana - III Appendice (1961)
    Per quanto riguarda le operazioni finanziarie in senso stretto, concernenti cioè solo scambî di importi espressi in moneta dovuti in tempi diversi, nulla sarebbe da aggiungere alla precedente trattazione di F. P. Cantelli. Giova però accennare ad una impostazione teorica, dovuta allo stesso Cantelli ...
  • FINANZIARIA, MATEMATICA
    Enciclopedia Italiana (1932)
    Interesse e tasso d'interesse. - Si dice interesse il reddito del capitale. L'interesse e il capitale vengono generalmente espressi in moneta. Si chiama tasso d'interesse il rapporto fra l'interesse prodotto dal capitale nell'unità di tempo e il capitale stesso; esso rappresenta perciò l'ammontare degl'interessi ...
Mostra altri risultati
Vocabolario
finanziàrio
finanziario finanziàrio agg. [der. di finanza2]. – 1. Relativo alla finanza, alle finanze, sia pubbliche sia private: attività f., mezzi f., questioni f.; resoconto f., relazione f.; anno f., esercizio f.; una situazione f. solida, pericolante;...
finanziària
finanziaria finanziària s. f. [femm. sost. dell’agg. finanziario]. – 1. Società finanziaria: si è rivolto a una finanziaria. 2. Legge finanziaria: il governo ha presentato la nuova finanziaria.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali