In algebra, dati un campo K, un suo sottocampo C e un elemento a di K non appartenente a C, si dice a. di a a C l’operazione che consiste nel passare da C a un campo più ampio di C, formato da tutti gli [...] in K. L’ampliamento C(a) può coincidere con K, ma in generale è un campo intermedio tra C e K (per es., aggiungendo al campo razionale un numero irrazionale algebrico si ottiene un sottocampo del campo reale, intermedio tra il razionale e il reale). ...
Leggi Tutto
curva
curva [s.f. dall'agg. curvo] [LSF] (a) Nell'uso comune, linea che non sia una retta. (b) In un uso più specifico, sinon. completo di linea, cioè includente anche le rette (ma per una definizione [...] cui dipende, sinon. quindi di diagramma, grafico e simili: c. d'isteresi magnetica, di prima magnetizzazione, di raffreddamento, ecc. ◆ [ALG] C. algebrica piana: ogni c. la cui equazione sia, in coordinate cartesiane, del tipo f(x,y)=0, dove f è un ...
Leggi Tutto
Antropologia
Sepoltura per i. Usanza funebre secondo la quale la salma viene gettata in mare, nei fiumi ecc., o temporaneamente o definitivamente. Nel primo caso, l’i. non è che parte del rito funerario [...] un altro nel fenomeno dell’eclissi o dell’occultazione.
Matematica
Proprietà d’i. Proprietà che competono a un ente geometrico, algebrico, topologico non di per sé, ma in quanto immerso in un altro ente. Il contrapposto è proprietà interne (o ...
Leggi Tutto
classificazione
classificazióne [Atto ed effetto del classificare "ordinare in classi"] [ALG] C. di fibrati: v. fibrato: II 571 c. ◆ [ALG] [ANM] [FAF] Problema della c.: consiste nella scelta di un criterio [...] in comune) di tutti gli enti matematici di un certo tipo (curve, superfici, ecc. in geometria; anelli, gruppi, ecc. in algebra; e così via). Si tratta di un problema di grande importanza per l'impostazione e la costruzione delle singole teorie, che ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] trascendenti). Con riguardo ai c. più elementarmente noti, se per es. C è il c. razionale, C- è il cosiddetto c. dei numeri algebrici (radici di equazioni a coefficienti razionali) e se C è invece il c. reale, C- è il c. complesso. Dire che il c ...
Leggi Tutto
Biologia e medicina
Sistema di fattori di natura proteica presenti nel plasma sanguigno, suscettibili, in particolari condizioni, di essere attivati e di dar luogo a una complessa reazione. Il c. è importante [...] i+k sia pari o dispari.
La regola di Laplace per lo sviluppo di un determinante è basata sulla considerazione dei c. algebrici. In particolare, si ha che: il determinante di una matrice quadrata è uguale alla somma dei prodotti degli elementi di una ...
Leggi Tutto
determinante
determinante [agg. e s.m. Der. del part. pres. determinans -antis del lat. determinare "definire qualcosa fissandone i limiti" (affine a delimitare), comp. di de- e terminus "limite, confine" [...] giunto: del d. di una matrice data, di ordine n, è quello che s'ottiene sostituendo a ogni elemento I della matrice il suo complemento algebrico; ha il valore An-1, se A è il valore del d. dato. ◆ [ALG] D. di potenze, o di Vandermonde: d. del tipo 1 ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] f(t)/g(t) (se g(t)≠0) sono funzioni note.
(P2)-Siano a₁(t), a₂(t), …, an(t) funzioni note. Allora una soluzione f(t) dell'e. algebrica f(t)n+a₁(t)f(t)n⁻¹+…+an(t)=0 è una nuova funzione nota.
(P3)-Sia f(t) una funzione nota. Una soluzione F(t) di un'e ...
Leggi Tutto
teoria delle rappresentazioni
Luca Tomassini
Teoria che studia omomorfismi di semigruppi (e in particolare gruppi), algebre o altre strutture algebriche nel corrispondente insieme degli endomorfismi [...] è iniettivo, ovvero a ogni elemento dell’oggetto algebrico rappresentato corrisponde uno e un solo ‘rappresentante’. da un lato lo studio delle rappresentazioni di gruppi e algebre ha motivato molti degli sviluppi dell’analisi funzionale, in fisica ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] e il corpo che prende nome dall’equazione ciclotomica (➔ circonferenza). Dato un corpo F=Q(α), l’insieme di tutti gli interi algebrici di F costituisce un anello indicato con OF. Per es., l’anello degli interi del corpo quadratico Q(√‾‾‾‾−1) è quello ...
Leggi Tutto
algebrico
algèbrico agg. [der. di algebra] (pl. m. -ci). – Di algebra, che concerne l’algebra: calcoli a., somma a., analisi a., ecc.; in partic.: espressione a., ogni scrittura in cui compaiano numeri, lettere e indeterminate, queste ultime...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...