La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] Fischer (1875-1954), il quale l'aveva introdotta alle ricerche di Hilbert sugli anellidipolinomi, che costituirono uno dei principali punti di partenza del suo lavoro sulla teoria degli anelli, iniziato intorno al 1920. Verso la metà degli anni ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] razionali. Il differenziale e la derivata sono studiati per polinomi e frazioni razionali in un numero finito di variabili su un anello commutativo con identità; si precisa qui la derivazione di un'algebra. Si prendono infine in considerazione le ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] Hesse (1811-1874) in Germania.
Il contributo di Boole traeva spunto dallo studio di Joseph-Louis Lagrange (1736-1813) sulle trasformazioni lineari dipolinomi omogenei. Data una forma binaria omogenea f(x1,x2) di grado n con coefficienti ai e una ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] Donaldson introduce nuovi invarianti per varietà di dimensione 4, capaci di distinguere strutture differenziabili su varietà omeomorfe. Si tratta dipolinomi con coefficienti nel secondo anellodi omologia. Donaldson applicherà questi risultati allo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra
Leo Corry
L'emergere della concezione strutturale in algebra
Il punto di vista strutturale [...] 'analisi unitaria della fattorizzazione nei campi di numeri e nei sistemi dipolinomi. Questo passo, cruciale per il successivo inquadramento di entrambe le questioni all'interno della teoria astratta degli anelli, sarebbe stato compiuto soltanto più ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] il caso dei polinomi in due variabili. Il libro di König, anche se mirava a essere semplicemente il primo libro di testo sull'argomento, andò ben oltre. È il primo libro in cui i concetti moderni di 'campo' e di 'anello commutativo' sono chiaramente ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] di calcolo di AH, altezza relativa al lato BC, ponendo BH=x (la 'cosa') e utilizzando le regole di calcolo sui polinomididi una lente e della mezzaluna, al quale al-Kāšī aggiunge anelli e varie figure piane composte di poligoni e archi di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola matematica di Mosca
Sergej Sergeevic Demidov
La scuola matematica di Mosca
La matematica a San Pietroburgo e a Mosca
Nella seconda [...] lavori sui metodi di approssimazione (formule per l'integrazione numerica e polinomi per l'approssimazione di funzioni che oggi portano nella sua dissertazione di dottorato nel 1938, Gel′fand mise a punto la teoria degli anelli commutativi normati, ...
Leggi Tutto