• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
35 risultati
Tutti i risultati [96]
Matematica [35]
Fisica [34]
Fisica matematica [12]
Analisi matematica [12]
Algebra [13]
Meccanica quantistica [9]
Fisica nucleare [5]
Meccanica [6]
Temi generali [6]
Storia della fisica [5]

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] hanno la stessa dimensione ed F(λ,U) è il complemento ortogonale di N(λ-,U*); inoltre, se E(λ,U) è l'autospazio di U per l'autovalore λ (cioè l'insieme di tutti gli x tali che U∙x=λx), allora E(λ,U) ed E(λ-,U*) hanno la stessa dimensione. Si ha, in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] (1934) mostra che per una mappa completamente continua Φ: X→X di classe C1 con differenziale di Fréchet Φ′(0) in 0 Se λ−−1 λ+−1 non sono autovalori di Φ′(0), allora, per r>0 piccolo, [59] dLS[I−λ+Φ,B(r)] = (−1)σdLS[I−λ−Φ,B(r)] dove σ è la somma ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

numerico, calcolo

Enciclopedia on line

Parte dell’analisi matematica che si occupa della ricerca di algoritmi per la risoluzione numerica di problemi quali l’approssimazione di funzioni e l’integrazione di equazioni differenziali ordinarie [...] esistono un vettore non nullo X e un numero λ tali che sia soddisfatta l’equazione AX=λX, allora si dice che λ è un autovalore e che X è un autovettore. L’equazione si può scrivere (A−λI)X = 0, cioè come un sistema omogeneo di equazioni, per il quale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMI DI EQUAZIONI LINEARI – METODO AGLI ELEMENTI FINITI – POLINOMIO CARATTERISTICO – EQUAZIONE DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su numerico, calcolo (2)
Mostra Tutti

problema

Dizionario delle Scienze Fisiche (1996)

problema problèma [Der. del lat. problema -atis, dal gr. próblema -atos, a sua volta da probállo "proporre"] [ALG] [ANM] Nella matematica e nelle sue applicazioni, quesito che richiede la determinazione [...] , e per altre non ricordate qui di seguito, si rinvia alla voce di qualificazione (per es., v. autovalore per i p. agli autovalori). ◆ [FML] [FAT] [FNC] P. a due corpi: nella trattazione di interazioni tra molecole, atomi, nucleoni e particelle ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su problema (5)
Mostra Tutti

ALGEBRA LINEARE

Enciclopedia Italiana - VII Appendice (2006)

L'a. l. costituisce uno strumento matematico di importanza fondamentale in ogni disciplina scientifica. Essa costituisce sia un efficace linguaggio comune con cui formulare problemi di natura diversa, [...] che ne viene allontanato. Problemi tipici sono il calcolo della funzione esponenziale di una matrice, determinare se una matrice ha autovalori con parte reale negativa (caso a tempo continuo) o di modulo minore di 1 (caso a tempo discreto), o contare ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: DECOMPOSIZIONE AI VALORI SINGOLARI – EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DI ELIMINAZIONE GAUSSIANA – SISTEMI DI EQUAZIONI LINEARI – ESPONENZIALE DI UNA MATRICE
Mostra altri risultati Nascondi altri risultati su ALGEBRA LINEARE (1)
Mostra Tutti

operatori hermitiani

Enciclopedia della Scienza e della Tecnica (2008)

operatori hermitiani Luca Tomassini Sia A:ℋ→ℋ un operatore lineare continuo (limitato) di uno spazio di Hilbert in sé e siano (∙,∙) il prodotto scalare di ℋ e ∣∣∙∣∣ la norma da esso indotta. Fissato [...] PiPj=0 se ifij): ogni matrice hermitiana ammette una base ortogonale nella quale è diagonale. Notiamo che se Ax=λx (ovvero x è un autovettore con autovalore λ) allora λ(x,x)= (Ax,x)=(x,Ax)=(x,λx)=λ_(x,x) e λ è reale. Data infine una funzione f: ℝ→ℝ, è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE LINEARE CONTINUO – PROIEZIONI ORTOGONALI – OPERATORE HERMITIANO – MATRICE HERMITIANA – ANALISI FUNZIONALE
Mostra altri risultati Nascondi altri risultati su operatori hermitiani (2)
Mostra Tutti

matrice

Enciclopedia on line

Anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia [...] costruita a partire dagli autovettori Vi di A e a sinistra per la m. inversa di T dove p è pari al numero di autovalori reali e distinti di A, e ciascun termine Li (λi), detto blocco di Jordan, è una m. triangolare superiore di dimensione pari alla ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOINGEGNERIA – BIOLOGIA MOLECOLARE – CITOLOGIA – ANATOMIA MORFOLOGIA CITOLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – ANALISI MATEMATICA – ANATOMIA – INDUSTRIA GRAFICA – MECCANICA APPLICATA – STRUMENTI E TECNOLOGIA APPLICATA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – EQUAZIONI DIFFERENZIALI LINEARI – SISTEMI DI EQUAZIONI LINEARI – POLINOMIO CARATTERISTICO – TABELLE A DOPPIA ENTRATA
Mostra altri risultati Nascondi altri risultati su matrice (5)
Mostra Tutti

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] Qè), τ〈0, (61) dove si è indicata con Qè la trasposta di Q e Q è una matrice i cui autovalori hanno parte reale negativa. L'applicazione più importante dei processi di Markov a più componenti si ha nella formulazione della termodinamica irreversibile ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] l'insieme di dati S : {R(k), − ∞ 〈 k 〈 + ∞; pn, ρn, n = 1, 2, ..., N}, (15) dove N indica il numero degli autovalori discreti, e per convenzione pn > 0. Questa definizione è motivata dall'esistenza di una corrispondenza biunivoca fra la funzione u ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] dato funzionale lineare e su E(L). Nel caso del prodotto di Wick, e è il ‛vuoto libero' (cioè l'autostato corrispondente al più piccolo autovalore dell'hamiltoniana libera), ma la teoria si applica ugualmente al vuoto fisico (definito dal più piccolo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti
1 2 3 4
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali