autospazio
autospàzio [Comp. di auto- e spazio] [ALG] Di un operatore lineare A definito su uno spazio vettoriale X, è un sottospazio A⊂X tale che se x∈A, allora Ax∈A; si usa anche dire, se λ è un autovalore [...] di A, che i vettori verificanti Ax=λx appartengono all'a. generato dall'autovalore λ. ◆ [MCC] A. instabile, neutro e stabile: v. sistemi dinamici: V 288 f. ...
Leggi Tutto
In fisica, si dice di grandezza che ha la proprietà dell’osservabilità, è cioè suscettibile di essere misurata. Le variabili dinamiche di un sistema fisico che siano suscettibili di determinazione sperimentale [...] un insieme completo di autovettori, che agisce nello spazio di Hilbert, H, i cui vettori di lunghezza unitaria rappresentano gli stati del sistema (➔ meccanica). Il risultato di una singola misurazione dell’o. è uno degli autovalori (o valori propri ...
Leggi Tutto
Ljapunov Aleksandr Michajlovic
Ljapunov 〈liapunòf〉 Aleksandr Michajlovič [STF] (Jaroslav 1857 - Odessa 1918) Prof. di matematica nell'univ. di Charkov (1893); socio straniero dei Lincei (1908). ◆ [MCC] [...] di L. sono intuitivamente proporzionali, con fattore infinito, agli autovalori delle matrici Mk per k=∞, e ci si può domandare se sia possibile definire anche una nozione corrispondente di autovettori. Sarebbe naturale pensare che a ogni punto y∈A si ...
Leggi Tutto
In fisica, lo scostamento più o meno sensibile e di durata più o meno breve di un fenomeno dal suo andamento regolare (detto appunto non perturbato) e anche, talvolta, la causa di tale scostamento: p. [...] studiato in due parti; di queste, una deve risultare semplice (hamiltoniano imperturbato), in modo da poterne calcolare autovalorieautovettori; l’altra (hamiltoniano di p.) deve potersi considerare ‘piccola’, rispetto alla prima, in modo che i suoi ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le tradizioni principali della meccanica
Ivor Grattan-Guinness
Le tradizioni principali della meccanica
Branche della meccanica
La meccanica, nel suo ampio spettro di usi, [...] molto contribuì l'analisi di Lagrange, tutte le radici latenti ('autovalori') di certe matrici associate devono essere reali e i corrispondenti vettori latenti ('autovettori') devono essere indipendenti tra loro. La sua dimostrazione fu sviluppata ...
Leggi Tutto