Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di H.: lo stesso che cubo di una base B di uno spazio di H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio ...
Leggi Tutto
forme modulari
Massimo Bertolini
Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] 2 rispetto a Γ è una funzione f:ℋ→ℂ a valori nel campo complesso ℂ, dove ℋ è il semipiano superiore dei numeri complessi zero. Tornando a un Γ generale, si consideri ora lo spazio (vettoriale complesso) S〈(Γ) delle forme modulari di peso k rispetto a ...
Leggi Tutto
operatori lineari
Luca Tomassini
Un’applicazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] continui tra due spazi di Banach costituisce un esempio di algebra di Banach (non commutativa). Se A manda lo spazio vettoriale n-dimensionale complesso ℂn con base (e1,...,en) nello spazio m-dimensionale ℂm con base (f1,...,fm) esistono numeri ...
Leggi Tutto
modulo
Luca Tomassini
Gruppo abeliano (in cui l’operazione di moltiplicazione è commutativa) unito a un anello di operatori. Un modulo è la generalizzazione di uno spazio vettoriale (lineare) su un [...] (a volte) per a negativo. Come precedentemente accennato, se A è un campo la nozione di modulo coincide con quella di spazio vettoriale. Anche uno spazio vettoriale V su un campo K (fissata una base) può essere considerato un modulo sull’anello Mν(K ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i vettori a, b, c, d, è (a╳b)✄(c╳d)= . ◆ [ANM] Metodo di L.: v. equazioni differenziali ordinarie nel campo reale: II 453 b. ◆ [ANM] Moltiplicatori di L.: v ...
Leggi Tutto
divergenza
divergènza [Der. del lat. scient. moderno divergentia, dal part. pres. divergens -entis di divergere (J. Kepler, 1611), formato sul precedente devergere "allontanarsi", comp. di de- e vergere [...] quindi "l'allontanarsi"] [ALG] [ANM] Operatore vettoriale differenziale (simb. div oppure come prodotto scalare dell'operatore nabla) che, applicato al vettore di un campo, individua le sorgenti scalari di esso: v. campi, teoria classica dei: I 470 d ...
Leggi Tutto
nucleo
nùcleo [Der. del lat. nucleus "gheriglio della noce, nòcciolo di un frutto", da nux nucis "noce"] [LSF] La parte centrale di qualcosa, in quanto appaia più compatta del resto oppure venga considerata [...] . di una trasformazione lineare: dato un operatore lineare L su uno spazio vettoriale V, è l'insieme degli x∈V tali che Lx=0. ◆ elettriche di plasma che genera la parte principale del campo magnetico terrestre (v. magnetismo terrestre: III 541 c ...
Leggi Tutto
simbolico
simbòlico [agg. (pl.m. -ci) Der. di simbolo] [ANM] Calcolo s.: calcolo condotto su simboli; per es., calcolo operatorio s., detto anche semplic. calcolo s. (→ operatorio). ◆ [PRB] Dinamiche [...] vede, la scrittura s. e la rappresentazione vettoriale sono equivalenti tra loro.A proposito della rappresentazione vettoriale è da ricordare il metodo dei vettori rotanti nel campo complesso per rappresentare funzioni sinusoidali tenendo presenti la ...
Leggi Tutto
rappresentazione
rappresentazióne [Der. del lat. repraesentatio -onis, dal part. pass. repraesentatus del lat. repraesentare "rappresentare", comp. di re- "di nuovo" e praesentare "presentare"] [ALG] [...] dei. ◆ [ALG] R. di un gruppo su uno spazio vettoriale: v. meccanica quantistica relativistica: III 713 a. ◆ [ALG] R della r.: consiste nella ricerca di un gruppo, un anello, un campo, ecc. che sia isomorfo (o anche solo omomorfo) a un assegnato ...
Leggi Tutto
funzionale
funzionale [agg. e s.m. Der. di funzione] [agg.] [ANM] Analisi, o calcolo, f.: teoria che generalizza agli spazi di funzioni i metodi e i risultati del-l'analisi matematica classica: v. funzionale, [...] I 479 d. ◆ [PRB] F. generatore della probabilità: v. processi di punto: IV 599 a. ◆ [ALG] F. lineare: è un'applicazione f:V→K, dove K è un campo e V uno spazio vettoriale su K, tale che per ogni scelta v₁,v₂∈V e d₁,d₂∈K è f(d₁v₁+ d₂v₂)=d₁f(v₁)+d₂f(v ...
Leggi Tutto
campo
s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...