La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] io credo che la nozione più o meno inconscia di gruppo continuo sia la sola base logica della nostra geometria. Come Helmholtz, e del nostro pensiero" e la sua potenza (o numero cardinale) è "quel concetto generale che, per mezzo della nostra attiva ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] i numeri reali (per la loro corrispondenza con i sottoinsiemi dedekindiani dei numeri razionali); così 2ℵ0 è anche detto cardinalità del continuo. Un'immediata questione è se 2ℵ0=ℵ1 è vera; la congettura di Cantor, che così fosse, è detta ipotesi ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] la storia della vita sulla Terra non è un processo continuo.
Anomalie dello sviluppo si associano a mutazioni dei geni problema di stabilire quanti possano essere i modelli di data cardinalità di una data teoria completa numerabile. L'idea principale ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] [n]p∉ωp per ogni p∈P}? Nel caso in cui la cardinalità di ωp cresca con p ('grande crivello'), il metodo di Linnik conduce d'un espace localement compact et d'une application continue J. Leray sviluppa la teoria delle successioni spettrali, da ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] , David Hilbert (1862-1943) apriva la sua famosa lista di problemi con "il problema di Cantor del numero cardinale del continuo: ogni sistema di infiniti numeri reali [...] è o equivalente all'insieme dei numeri interi o equivalente all'insieme di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] contenenti la chiave per la comprensione dell'infinito. L'ipotesi del continuo di Cantor afferma che la cardinalità del continuo dei numeri reali è ℵ1, il più piccolo numero cardinale non numerabile, e in molte occasioni egli credette di averla ...
Leggi Tutto
continuo3
contìnuo3 s. m. [uso sostantivato dell’agg. continuo]. – 1. a. In generale, ciò che ha continuità nel tempo e nello spazio, che non ha interruzioni, separazioni: il concetto, la nozione del c.; più particolarm., in fisica e in filosofia,...
vento
vènto s. m. [lat. vĕntus; le accezioni del sign. 4 dallo spagn. viento]. – 1. a. In meteorologia, movimento di masse d’aria atmosferica che avviene orizzontalmente, da una zona di alta pressione a una di bassa pressione (se lo spostamento...