Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere.
Ecologia
Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] dove il simbolo (nk) indica il coefficiente binomiale; tale s. è convergente per |x|≤1 se n>0, per |x|<1 se n<0; per x=1 converge anche se è −1<n<0; nel caso che n sia intero positivo o nullo la s. si riduce a una somma finita e quindi ...
Leggi Tutto
Abel Niels Henrik
Abel 〈àabel〉 Niels Henrik [STF](Findö 1802 - Froland 1829) Matematico norvegese. ◆ [ANM] Condizione, o criterio, di convergenza di A.: (a) se Σnan converge e bn è una successione monotona [...] limitata, allora ∑nanbn è convergente; (b) se ∫α∞ f(x,y)dx converge uniformemente in un insieme X e se g(x,y) è monotona per x ∈[α, ∞] e uniformemente limitata in X, allora ∫α∞ f(x,y)g(x,y)dx è uniformemente convergente in x. ◆ [ANM] Disuguaglianza ...
Leggi Tutto
Nome dato da Eulero alla serie
,
dove a, b, c, z sono numeri complessi qualsivogliano (ma c è diverso da 0 e da un intero negativo). Essa converge assolutamente per | z | < 1. K.F. Gauss, che studiò [...] per primo la serie i. (detta perciò anche serie di Gauss), chiamò a, b, c i parametri, z l’argomento, e ne indicò con F (a, b, c, z) la somma, detta funzione ipergeometrica. Tale funzione soddisfa l’equazione ...
Leggi Tutto
grandi numeri
grandi nùmeri [ASF] [RGR] Ipotesi dei g.: v. costanti fisiche fondamentali, variabilità delle: I 812 c. ◆ [PRB] Legge dei g.: la media di N variabili aleatorie indipendenti ugualmente distribuite [...] converge, con probabilità 1, a un limite finito per N→∞; tale limite coincide con il valore medio, rispetto alla sua distribuzione, di ogni singola variabile (si deve supporre che il quadrato della variabile aleatoria abbia valore medio finito): v. ...
Leggi Tutto
Matematico (Brody, Galizia, 1801 - Zurigo 1859), prof. nell'univ. e nel politecnico di Zurigo. Portò varî contributi al calcolo infinitesimale e studiò alcune questioni di astronomia. n Criterio di convergenza [...] a termini positivi a1+a2+ ... +an+...: se il rapporto nan/an+1 si mantiene, da un certo indice in poi, maggiore di un numero h>1, la serie converge; diverge se la stessa espressione, da un certo indice in poi, si mantiene minore o uguale a 1. ...
Leggi Tutto
Antropologia
Insieme di rassomiglianze e parallelismi esistenti fra elementi culturali elaborati da popolazioni differenti e lontane. Secondo la teoria della c. sostenuta nella seconda metà del 19° sec. [...] x0 e che S (x0) è la sua somma se la successione sn (x0) = ∑nr=1 ur (x0) delle sue somme parziali, calcolate nel punto x0, converge a S (x0); si dice che è convergente in un dominio D se lo è in ogni punto di D. Un fatto notevolissimo è che il campo ...
Leggi Tutto
spazio di Banach
Arrigo Cellina
Uno spazio normato X diventa metrico definendo la distanza tra due punti x e y, indicata con d(x,y), come d(x,y)=∥x−y∥. Se questo spazio metrico è ‘completo’, è cioè [...] tale che ogni successione di Cauchy converge, X viene detto spazio di Banach. I n umeri reali hanno questa proprietà di essere completi e gli spazi di Banach sono le naturali generalizzazioni dell’insieme dei numeri reali.
→ Convessità ...
Leggi Tutto
trasformata di Laplace
Luca Tomassini
Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] convergenza del limite in [1] è l’insieme di tutti gli s tali che Res>σc. Se l’integrale non converge mai si scrive allora σc=+∞, se converge ovunque σc=−∞. Il numero σc è detto ascissa di convergenza di L(s) e la linea Res=σc asse di convergenza ...
Leggi Tutto
Dini Ulisse
Dini Ulisse [STF] (Pisa 1845 - ivi 1918) Prof. nell'univ. di Pisa di geodesia (1865) e poi di analisi matematiche (1874), anche direttore della Scuola normale (1874-76) e (1900-1918). ◆ [ANM] [...] Teorema di D.: afferma che se una successione non decrescente di funzioni fn(x) converge in un intervallo chiuso [a, b] alla funzione f(x), tale convergenza è anche uniforme. ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] u definite su Ω tali che ∣u∣p sia integrabile (nel senso di Lebesgue) su Ω. La convergenza in Lp (Ω) è definita nel modo seguente: un converge a u in Lp (Ω) se l'integrale ∫Ω ∣ un (x) - u (x)∣p dx tende a zero per n tendente all'infinito.
Si dice che ...
Leggi Tutto
convergere
convèrgere v. intr. e tr. [dal lat. tardo convergĕre, comp. di con- e vergĕre «volgersi»] (io convèrgo, tu convèrgi, ecc.; pass. rem. convèrsi [raro convergéi], convergésti, ecc.; raro il part. pass. convèrso e quindi anche i tempi...
convergente
convergènte agg. e s. m. [part. pres. di convergere]. – 1. agg. Che converge, cioè si dirige a un medesimo fine o punto: linee c.; strade c.; due fasci di luce convergenti; e in senso fig.: azioni, interessi convergenti. 2. agg....