congettura di Birch e Swinnerton-Dyer
Massimo Bertolini
È considerata una delle questioni fondamentali della matematica contemporanea. La congettura in questione stabilisce una relazione tra le proprietà [...] di E. La comprensione, sia teorica sia algoritmica, dell’intero rΕ rappresenta il problema chiave nello studio della teoria aritmetica delle curveellittiche. Se p è un numero primo che non divide il discriminante ΔΕ=4a3+ 27b2 di E, si indichi con np ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] di un punto. Per es., la nozione di ‘vertice’ di una curva piana C (punto in cui C ha un contatto di ordine ≥3 ogni punto escono due parallele a una retta data, e la g. ellittica o di Riemann, nella quale si postula la non esistenza di parallele. ...
Leggi Tutto
In geometria, varietà algebrica del quarto ordine; in particolare, q. razionale normale è la curva dello spazio a 4 dimensioni di equazioni x1=t, x2=t2, x3=t3, x4=t4.
Le q. si distinguono in q. piane [...] intersezione di 2 quadriche Q, Q′ e perciò è anche la curva base del fascio di quadriche individuato appunto da Q, Q′. Indicati genere 1 ed è rappresentabile parametricamente mediante funzioni ellittiche; se al contrario possiede un punto doppio ...
Leggi Tutto
Curva algebrica di ordine 3°. Le c. si distinguono in piane e gobbe. C. piana Ogni curva piana rappresentata in coordinate cartesiane da un’equazione c. in due variabili: f (x, y)=0, dove f (x, y) è un [...] mediante funzioni razionali), una c. senza punto doppio è una curva di genere 1 o ellittica (si può rappresentare parametricamente mediante funzioni ellittiche). C. gobba Curva algebrica spaziale del 3° ordine (ogni piano la incontra in ...
Leggi Tutto
Il termine complessità è oggi frequentemente usato, in campo scientifico, in contesti diversi. In quello dell'informatica, dell'analisi numerica e dell'ottimizzazione, corrisponde alla caratteristica quantitativa [...] a oscillazioni persistenti) di forma non necessariamente ellittica e, pertanto, la corrispondente evoluzione nel tempo è razionale, si ha ancora un ciclo limite (una curva unidimensionale chiusa che si sviluppa nello spazio a quattro dimensioni); ...
Leggi Tutto
Il Rinascimento. L'astronomia
J.V. Field
L'astronomia
Gli storici dell'arte e delle discipline umanistiche si sentirebbero forse a proprio agio definendo 'Rinascimento' il periodo che va dal 1400 al [...] precisa quando si trattava di applicarla a una scala curva. Tycho probabilmente apprese tale procedura in occasione di una grande, di otto minuti, lo portò ad assegnare un'orbita ellittica al pianeta), si deve concludere che avesse buone ragioni per ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Le tradizioni sulle coniche...
Roshdi Rashed
Philippe Abgrall
Le tradizioni sulle coniche e l'inizio delle ricerche sulle proiezioni
A [...] iniziale, ma confronta gli angoli formati da due raggi vettori. Se le curve (C1) e (C2) sono su due piani paralleli , e se , la rotazione di M attorno a BC induce una traiettoria ellittica, dunque non circolare, per M′. La superficie sulla quale la ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] definire, prendendone l'inversa, la funzione v=senu. Allo stesso modo l'integrale ellittico più semplice e paradigmatico è
che misura la lunghezza d'arco della lemniscata r2=cos2θ, una curva che ha la forma di un otto. La [9] definisce una funzione ...
Leggi Tutto
L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare
June Barrow-Green
Il problema dei tre corpi e la stabilità del Sistema solare
Questo capitolo illustra, a grandi [...] ‒ generate nel caso di orbite a due corpi di tipo ellittico;
3) quelle in cui le inclinazioni sono finite e le eccentricità V2>0, allora 2Ω>C e la famiglia di curve 2Ω=C (curve di Hill a velocità nulla) individua le regioni dello spazio entro ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] e le teorie interamente nuove come la teoria delle funzioni ellittiche e abeliane, le funzioni modulari e automorfe. E poi , quando la superficie fondamentale degenera in una curva immaginaria piana. Tutte queste geometrie si possono considerare ...
Leggi Tutto
spirale2
spirale2 s. f. [dall’agg. spirale, sostantivato]. – 1. a. In geometria, curva piana (meno spesso detta linea spirale) che si avvolge intorno a un punto fisso detto polo della s., allontanandosi o avvicinandosi sempre di più al polo;...
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...