problema
problèma [Der. del lat. problema -atis, dal gr. próblema -atos, a sua volta da probállo "proporre"] [ALG] [ANM] Nella matematica e nelle sue applicazioni, quesito che richiede la determinazione [...] ; infatti, i grandi geometri greci escogitarono diversi metodi per la loro risoluzione, in genere approssimata, servendosi di curvealgebriche o trascendenti appositamente ideate, o di metodi e strumenti meccanico-geometrici. Il fatto è che, per i ...
Leggi Tutto
jacobiano
jacobiano (o iacobiano) [agg. e s.m. Der. del cognome di K.G.J. Jacobi] [ALG] Curva j. (o, assolut., jacobiana s.f.): di un sistema lineare doppiamente infinito (rete) di curvealgebriche piane [...] λ₁f₁(x₁,x₂,x₃)+λ₂f₂(x₁,x₂,x₃)+λ₃f₃(x₁,x₂,x₃)=0 è il luogo dei punti doppi delle curve della rete. L'equazione della curva è J=0, ove J è il determinante j. (v. oltre) del sistema di polinomi f₁, f₂, f₃ rispetto alle tre variabili x₁, x₂, x₃. ◆ [ALG] ...
Leggi Tutto
Matematico (Mannheim 1844 - Erlangen 1921), prof. alle univ. di Heidelberg (1874) ed Erlangen (dal 1875 alla morte); socio straniero dei Lincei (1893). Ha lasciato ricerche fondamentali sulle funzioni [...] algebriche, sulle curve e le superfici algebriche, per le quali è da considerarsi uno dei fondatori della geometria algebrica. Le sue ricerche furono validamente riprese dalla scuola geometrica italiana. Fu condirettore dei Mathematische Annalen e ...
Leggi Tutto
Matematico italiano (Berlino 1859 - Napoli 1936), professore di geometria e di geodesia nell'univ. di Napoli. Si occupò di geometria degl'iperspazî, alla quale apportò notevoli contributi. Portano il suo [...] nome certe superfici algebriche aventi per sezioni piane curve ellittiche, e certi coni connessi con le calotte superficiali del second'ordine i quali sono invarianti di tipo proiettivo differenziale. Sindaco di Napoli nel 1914-16, fu, dal 1919, ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] diretti di Corrado Segre, e inoltre Eugenio Giuseppe Togliatti ed Enrico Bompiani.
L'approccio numerativo allo studio delle curvealgebriche fu approfondito da Corrado Segre nelle ricerche sulle rigate e sulle varietà luoghi di spazi. L'origine dei ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] . Rielabora in termini geometrici l'intera teoria riemanniana delle funzioni abeliane, affronta il problema della classificazione delle curvealgebriche secondo il genere, e risolve nei casi più semplici il problema della uniformizzazione delle ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La matematica
Luigi Pepe
L’Italia è stata per cinque secoli al centro della ricerca e degli insegnamenti matematici. A partire dalla seconda metà del 12° sec., quando Gherardo da Cremona, Platone da [...] integrali del calcolo delle variazioni. Saladini riunì in una sola classe di curvealgebriche la lemniscata di Bernoulli, le ovali di Cassini, le curve dotate delle proprietà dell’isocronismo. Paradisi produsse un interessante lavoro sulla vibrazione ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] . Negli anni Quaranta e Cinquanta, Jacob Steiner (1796-1863) presentò risultati sorprendenti sulle curvealgebriche di ordine superiore, ma sfortunatamente non fornì la minima indicazione sui suoi metodi cosicché le sue scoperte furono accolte ...
Leggi Tutto
LEVI, Beppo
Salvatore Coen
Nacque a Torino il 14 maggio 1875 da Giulio Giacomo e Sara Diamantina (Mentina) Pugliese. Presso l'Università di Torino compì i suoi studi fino al conseguimento della laurea [...] in Memorie della R. Acc. delle scienze di Torino, XLVIII [1899], pp. 83-142). I risultati sulla desingolarizzazione delle curvealgebriche che, a partire da idee e risultati di M. Noether erano ormai giunti a maturazione, lasciavano pensare che fosse ...
Leggi Tutto
DE MARTINO (Di Martino), Nicola Antonio
Pietro Nastasi
Nacque a Faicchio (BeneventO) il 3 apr. 1701 da Cesare e Agata Ferrari. Compiuta la prima istruzione nel seminario di Cerreto, la famiglia, di [...] sotto gli occhi di molti, i metodi per risolvere algebricamente i problemi di geometria, la teoria delle equazioni algebriche e lo studio delle curvealgebriche rappresentavano così quasi l'occasione per diffondere l'Arithmetica universalis ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
omaloidico
omaloìdico (o omalòidico) agg. [comp. del gr. ὁμαλός «uguale, uniforme» e -oide, con suff. aggettivale] (pl. m. -ci). – In geometria algebrica, rete o., sistema lineare di infinite curve algebriche piane razionali di ordine n, i...