• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
72 risultati
Tutti i risultati [530]
Matematica [72]
Diritto [65]
Medicina [57]
Biologia [54]
Temi generali [52]
Arti visive [49]
Fisica [34]
Archeologia [37]
Economia [31]
Analisi matematica [28]

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] Vitali, allora F è assolutamente continua rispetto a m se e solo se la derivata f di F rispetto a m esiste quasi ovunque e F è l'integrale si riferisce in generale con il nome di 'integrazione funzionale'; questo settore ha a che fare con la misura e ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Leggi di scala

Enciclopedia della Scienza e della Tecnica (2007)

Leggi di scala Luciano Pietronero Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] di equazioni differenziali. Il concetto di derivata implica infatti la regolarità a piccola scala r: [2] Γ(r′= br) = A(b)∙Γ(r) . Questa relazione funzionale è soddisfatta con qualunque esponente intero o non intero. Infatti, assumendo Γ(r)=rα avremo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – INTERNET
TAGS: DISTRIBUZIONE DI PROBABILITÀ – TEOREMA DEL LIMITE CENTRALE – GRUPPO DI RINORMALIZZAZIONE – DISTRIBUZIONE DI POISSON – DISTRIBUZIONE GAUSSIANA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] pratico del metodo di Newton-Raphson nel quale la derivata f′(xn), spesso difficile da calcolare, viene sostituita dal alle derivate parziali, le equazioni integrali e le equazioni funzionali più generali, vi sono tentativi sporadici di risoluzione, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] Per esempio, nel caso del calcolo delle variazioni, in cui si minimizza un funzionale del tipo [5] formula con opportune condizioni al contorno, K è tutto mappa che associa a un punto il valore della derivata in quel punto è crescente, o almeno non ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] una funzione reale definita positiva V(t,y) la cui derivata calcolata lungo le soluzioni della [13] è negativa in un 19] è l'equazione di Euler-Lagrange del calcolo delle variazioni per il funzionale φ definito dalla: , dove F(t,x):=∫x0f (t,s)ds. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] e C. Denotiamo con p(x,y) e q(x,y) il valore della derivata di questa curva in un generico punto C. Consideriamo ora una qualunque curva (x(t definita una distanza d(x,y). Lo strumento funzionale che Hilbert utilizzò per trattare il problema delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] al concetto di spazio metrico astratto, fondamentale per l'analisi funzionale e la topologia. Uno spazio metrico è uno spazio in fatto che P(ν+1)⊆P(n) rese possibile la definizione di derivato di ordine infinito P(∞) come l'intersezione dei P(ν) per ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

forme modulari

Enciclopedia della Scienza e della Tecnica (2008)

forme modulari Massimo Bertolini Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] parte immaginaria positiva, soddisfacente le condizioni seguenti: (a) f è olomorfa su ℋ (cioè ammette la derivata in senso complesso in ogni punto di ℋ); (b) f soddisfa l’equazione funzionale f(γ∣)=(c∣+d)〈f(z) per ogni scelta di z in ℋ e di γ in Γ ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: FUNZIONE ZETA DI RIEMANN – ULTIMO TEOREMA DI FERMAT – EQUAZIONE FUNZIONALE – SEMIPIANO SUPERIORE – PRODOTTO DI MATRICI
Mostra altri risultati Nascondi altri risultati su forme modulari (1)
Mostra Tutti

spazio vettoriale topologico

Enciclopedia della Scienza e della Tecnica (2008)

spazio vettoriale topologico Luca Tomassini Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] ∣f(k)(x)∣〈ε per k=0,1,...,m, dove f(k) indica la derivata k-esima della funzione f. Lo spazio C∞([a,b]) rientra tuttavia in un in quanto per essi vale il teorema di Hahn-Banach, che garantisce l’esistenza di funzionali lineari continui. → Equazioni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEORIA DELLE DISTRIBUZIONI – SISTEMA DI INTORNI – ANALISI FUNZIONALE – NUMERI COMPLESSI – SPAZI VETTORIALI
Mostra altri risultati Nascondi altri risultati su spazio vettoriale topologico (1)
Mostra Tutti

jacobiano

Dizionario delle Scienze Fisiche (1996)

jacobiano jacobiano (o iacobiano) [agg. e s.m. Der. del cognome di K.G.J. Jacobi] [ALG] Curva j. (o, assolut., jacobiana s.f.): di un sistema lineare doppiamente infinito (rete) di curve algebriche piane [...] . può essere considerato in un certo senso la generalizzazione della derivata ordinaria, cui si riduce per n=1. L'annullarsi identico sono legate tra di loro da una relazione (sono cioè funzionalmente dipendenti); se lo j. è invece diverso da zero in ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su jacobiano (2)
Mostra Tutti
1 2 3 4 5 6 7 8
Vocabolario
scala
scala s. f. [lat. tardo scala -ae (nel lat. class. soltanto al plur., scalae -arum), der. di scandĕre «salire»]. – 1. Termine generico per indicare varî tipi di strutture fisse o mobili, a scalini o a pioli, che consentono alle persone di...
orgànico
organico orgànico agg. e s. m. [dal lat. organĭcus, gr. ὀργανικός «attinente alle macchine, agli strumenti; che serve di strumento», der. di ὄργανον: v. organo] (pl. m. -ci). – 1. agg. Che si riferisce a, o ha rapporto con, gli organismi viventi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali