Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] teorema mostrano come il sottodifferenziale della polare inverta la mappa x→∂f(x). Per una funzione convessa e liscia, cioè differenziabile, definita sulla retta reale si vede subito che la mappa che associa a un punto il valore della derivata in ...
Leggi Tutto
Geometria: nuovi orizzonti
Luca Migliorini
I tempi della matematica sono più lunghi di quelli di altre scienze. Per la natura stessa, semplice e fondamentale, degli oggetti studiati (i numeri e le figure [...] e gli corrisponderanno coordinate diverse, legate tra loro da corrispondenze, dette cambi di coordinate. Si parla di varietà differenziabile se le funzioni che definiscono i cambi di coordinate sono dotate di derivate di ogni ordine, mentre si parla ...
Leggi Tutto
convessità generalizzata
Angelo Guerraggio
Termine che designa gli studi tesi a estendere le proprietà delle funzioni convesse (o concave) – almeno quelle ritenute essenziali in un determinato contesto [...] , esistono criteri utili per il riconoscimento della quasi-convessità. Tali criteri richiedono che la funzione f sia differenziabile una o due volte. Le funzioni quasi-convesse godono comunque delle proprietà richiamate all’inizio per motivare la ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] più corpi si sono allontanati all'infinito. L'insieme C dei punti critici del funzionale di azione lagrangiana, se questo è differenziabile in C, fornisce soluzioni dell'equazione del moto. Nel problema a N corpi, e in quelli in cui il potenziale ha ...
Leggi Tutto
Fisica matematica
Gianfausto Dell'Antonio
La fisica matematica si può definire come la disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici. La ricerca [...] più corpi si sono allontanati all'infinito. L'insieme C dei punti critici del funzionale di azione lagrangiana, se questo è differenziabile in C, fornisce soluzioni dell'equazione del moto. Nel problema a N corpi, e in quelli in cui il potenziale ha ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] (ordinarie o alle derivate parziali). Geometricamente questa descrizione equivale a immaginare lo spazio delle fasi come una varietà differenziabile, sulla quale ha senso definire la nozione di campo vettoriale: a ogni stato si associa il vettore ...
Leggi Tutto
THOM, René
Carlo Cattani
Matematico francese, nato a Montbéliard (Doubs) il 2 settembre 1923. Compiuti gli studi all'Ecole Normale Supérieure (1943-46), è stato ricercatore al Centre national des recherches [...] di H. Cartan, ha conseguito il dottorato in scienze (1951) con un fondamentale lavoro sulla classificazione delle varietà differenziabili (teoria del cobordismo). Professore alla facoltà di Scienze dell'università di Strasburgo (1957-63), dal 1964 è ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...]
Questa serie è quindi la serie di Fourier della propria somma. Per tornare da F(x) alla serie originaria f(x) occorre differenziare due volte, e in generale ciò non è possibile. Si può prendere però una derivata seconda generalizzata di F(x), e ...
Leggi Tutto
Probabilità
Gian-Carlo Rota e Joseph P.S. Kung
*La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi.
sommario: 1. Introduzione. [...] . Il fatto che l'incremento infinitesimo W(t + dt) − W(t) sia di ordine √−d−t conduce a regole di differenziazione sensibilmente diverse da quelle del calcolo differenziale ordinario. Per esempio, il differenziale di x(t) = exp W(t) risulta essere dx ...
Leggi Tutto
riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] e covarianti, assegnato sulla varietà medesima: v. varietà riemanniane: VI 498 b. ◆ [ALG] Struttura r. debole: v. varietà differenziabili infinito-dimensionali: VI 494 f. ◆ [ALG] Superficie r. (o, assolut., riemanniana s.f.): di una curva, è una ...
Leggi Tutto
differenziabile
differenziàbile agg. [der. di differenziare]. – 1. Che si può differenziare, di cui è possibile riconoscere la o le differenze: oggetti, concetti, specie vegetali facilmente o difficilmente differenziabili. 2. In matematica,...
differenziamento
differenziaménto s. m. [der. di differenziare]. – L’atto, il fatto e il risultato del differenziare, o del differenziarsi: il progressivo d. di due caratteri simili, di due situazioni analoghe; d. didattico, la individualizzazione...