• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
44 risultati
Tutti i risultati [246]
Fisica [44]
Matematica [108]
Analisi matematica [38]
Storia della matematica [40]
Biografie [26]
Storia della fisica [26]
Fisica matematica [20]
Temi generali [18]
Algebra [17]
Meccanica [14]

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] elettromagnetico nel vuoto soddisfi le equazioni delle onde (le equazioni di Maxwell sono un sistema iperbolico, campo A(x), che giocherebbe altrimenti il ruolo di moltiplicatore di Lagrange nel principio variazionale, imponendo vincoli al sistema. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti

Storia della Scienza (2003)

L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti Craig G. Fraser Meccanica dei continui e dei sistemi discreti Origine dei concetti di sforzo e di deformazione La teoria matematica [...] un piccolo elemento cilindrico della piastra e applica il principio dei lavori virtuali di Lagrange per dedurre l'equazione differenziale alle derivate parziali ottenuta in precedenza da Lagrange e Germain. La sua memoria del 1821 è un tentativo più ... Leggi Tutto
CATEGORIA: STORIA DELLA FISICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] delle abbreviazioni Lagrange ottenne le equazioni differenziali per s1, u1, s2, u2, … nella forma: Le soluzioni di queste equazioni erano della forma: In tali soluzioni le costanti a, b, c, … rappresentavano le radici di un'equazione di grado n ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Meccanica variazionale

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Meccanica variazionale Helmut Pulte Rüdiger Thiele Meccanica variazionale Le locuzioni 'meccanica classica' e 'meccanica newtoniana' sono, tradizionalmente, usate come sinonimi. [...] la determinazione del moto di punti materiali a una "questione di puro calcolo". Da essa ricava anche le famose 'equazioni lagrangiane del moto'. Il principio delle velocità virtuali assume importanza nella Méchanique analitique di Lagrange ‒ e in ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] finire del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ( : V=Q(1+R₀R₀(2c2)+...)/(4πε₀R₀). Le equazioni di Maxwell, oltre alla soluzione corrispondente ai p. ritardati ammettono anche ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

energia

Dizionario delle Scienze Fisiche (1996)

energia energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] exergy, per il quale peraltro il termine corrente è exergia (←). ◆ [MCC] E. generalizzata: è un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III 655 a. ◆ [LSF] E. in atto: contrapp. a e. potenziale, v. sopra, nella definizione ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su energia (13)
Mostra Tutti

Helmholtz Hermann Ludwig Ferdinand von

Dizionario delle Scienze Fisiche (1996)

Helmholtz Hermann Ludwig Ferdinand von Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante di Lagrange-H., o di Smith-H.: → Lagrange, Giuseppe Luigi ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI AL CONTORNO – POTENZIALI CHIMICI – LAVORO MECCANICO – ELETTRODINAMICA
Mostra altri risultati Nascondi altri risultati su Helmholtz Hermann Ludwig Ferdinand von (1)
Mostra Tutti

Legendre Adrien-Marie

Dizionario delle Scienze Fisiche (1996)

Legendre Adrien-Marie Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] L. Lagrange (1812); da ultimo insegnò matematica nell'École Polytechnique (1816). ◆ [ANM] Condizione di L.: condizione necessaria di minimo per soluzioni estremali di problemi variazionali: v. variazioni, calcolo delle: VI 463 f. ◆ [ANM] Equazione di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – ÉCOLE POLYTECHNIQUE – COORDINATE SFERICHE – RADICI MULTIPLE – HAMILTONIANA
Mostra altri risultati Nascondi altri risultati su Legendre Adrien-Marie (3)
Mostra Tutti

perturbazione

Enciclopedia on line

In fisica, lo scostamento più o meno sensibile e di durata più o meno breve di un fenomeno dal suo andamento regolare (detto appunto non perturbato) e anche, talvolta, la causa di tale scostamento: p. [...] Lagrange, H. Poincaré, hanno portato da una parte alla risoluzione del problema in casi particolari, dall’altra alla formulazione di ’espressione analitica di tale forza. Meccanica quantistica Nei problemi per i quali l’equazione di Schrödinger non ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI
TAGS: CAMPO MAGNETICO TERRESTRE – EQUAZIONE DI SCHRÖDINGER – MECCANICA QUANTISTICA – AUTOVALORI – PLUTONE
Mostra altri risultati Nascondi altri risultati su perturbazione (1)
Mostra Tutti

Whittaker, Sir Edmund Taylor

Enciclopedia on line

Whittaker, Sir Edmund Taylor Fisico matematico (Southport 1873 - Edimburgo 1956), prof. di meccanica nell'univ. di Edimburgo (dal 1912), socio straniero dei Lincei (1922), accademico pontificio (1936). È stato tra i più eminenti cultori [...] matematica (sull'analisi armonica, sulle funzioni integrali e sulle equazioni differenziali alle derivate parziali, sulla soluzione generale dell'equazione di Laplace, ecc.). Altri suoi studî riguardano la spettroscopia, l'ottica, la relatività ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ANALISI MATEMATICA – SISTEMI DINAMICI – SOUTHPORT – EDIMBURGO
Mostra altri risultati Nascondi altri risultati su Whittaker, Sir Edmund Taylor (3)
Mostra Tutti
1 2 3 4 5
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali