• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
20 risultati
Tutti i risultati [246]
Fisica matematica [20]
Matematica [108]
Fisica [44]
Analisi matematica [38]
Storia della matematica [40]
Biografie [26]
Storia della fisica [26]
Temi generali [18]
Algebra [17]
Meccanica [14]

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] ), con l'ulteriore semplificazione si ottiene, per l''energia cinetica' totale del sistema meccanico, la seguente equazione di Lagrange del secondo tipo (Lagrange 1788, p. 226 [1853-55, II, p. 334]): Qui denota la 'velocità generalizzata'. La ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] 'École Normale e nell'École polytechnique di Parigi (1787). ◆ [OTT] Condizione di ortoscopia L.-Airy: → Airy, Sir George Biddel. ◆ [MCC] Equazioni di L. (o equazione di Eulero-L.): equazioni differenziali che reggono il moto di un sistema olonomo: v ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

Alembert, Jean-Baptiste Le Rond detto d'A.

Enciclopedia on line

Alembert, Jean-Baptiste Le Rond detto d'A. Fisico, matematico e filosofo francese (Parigi 1717 - ivi 1783). Amico di Voltaire e Diderot, collaborò all'Enciclopedia, di cui redasse il Discorso preliminare (1751), vero e proprio sommario dell'enciclopedismo [...] semplici quadrature il problema del moto di un grave. Trovò (1747) l'equazione, alle derivate parziali del 2º ordine, alla quale soddisfano le vibrazioni trasversali di una corda elastica, la cosiddetta equazione di d'Alembert o delle corde vibranti ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA – METAFISICA
TAGS: EQUAZIONE, ALLE DERIVATE PARZIALI – ACCADEMIA DELLE SCIENZE DI PARIGI – PROBLEMA DEI TRE CORPI – ACCADEMIA DI FRANCIA – ACCADEMIA DI BERLINO
Mostra altri risultati Nascondi altri risultati su Alembert, Jean-Baptiste Le Rond detto d'A. (3)
Mostra Tutti

meccanica

Enciclopedia on line

Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] relazioni [2] formula che sono appunto le equazioni di Lagrange o, con più precisa denominazione, la ‘seconda forma delle equazioni di Lagrange’. Si tratta di un sistema di n equazioni differenziali del second’ordine nelle n funzioni incognite ... Leggi Tutto
CATEGORIA: DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA
TAGS: LEGGE DELLA GRAVITAZIONE UNIVERSALE – EQUAZIONE ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – LUNGHEZZA D’ONDA DI DE BROGLIE – SCIENZA DELLE COSTRUZIONI
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

analisi

Enciclopedia on line

Chimica Generalità L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] (1783) che studiò gli integrali multipli, alcuni tipi di equazioni differenziali, facendo applicazioni del calcolo infinitesimale allo studio delle proprietà differenziali delle superfici; di G.L. Lagrange (1813) che introdusse il simbolo f′(x) per ... Leggi Tutto
CATEGORIA: FILOSOFIA DEL LINGUAGGIO – LINGUISTICA GENERALE – TEMI GENERALI – STRUMENTI MUSICALI – CHIMICA ANALITICA – CHIMICA FISICA – STRUMENTI – FISICA MATEMATICA – ANALISI MATEMATICA – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – PEDAGOGIA – BIOGRAFIE – PSICANALISI – PSICOLOGIA COGNITIVA – PSICOLOGIA DELL ETA EVOLUTIVA – PSICOLOGIA GENERALE – PSICOLOGIA SOCIALE – PSICOLOGIA SPERIMENTALE – PSICOMETRIA – PSICOTERAPIA – STORIA DELLA PSICOLOGIA E DELLA PSICANALISI – ARCHIVISTICA BIBLIOGRAFIA E BIBLIOTECONOMIA
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – RISONANZA MAGNETICA NUCLEARE
Mostra altri risultati Nascondi altri risultati su analisi (3)
Mostra Tutti

Fisica matematica

Enciclopedia del Novecento (1977)

Fisica matematica EEugene P. Wigner di Eugene P. Wigner Fisica matematica sommario: 1. Introduzione. 2. Il ruolo della matematica nella fisica. a) Uno schema dei concetti fondamentali della fisica. [...] è la differenza fra l'energia cinetica e quella potenziale, espressa in funzione di qi e di ói. La sorpresa per la generalità e la relativa semplicità delle equazioni di Lagrange sparì quando (nel 1834, cioè molti anni dopo) W.R. Hamilton mostrò che ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – TENSORE DI CURVATURA DI RIEMANN – TEORIA DELLE RAPPRESENTAZIONI – SPAZIO DELLE CONFIGURAZIONI
Mostra altri risultati Nascondi altri risultati su Fisica matematica (3)
Mostra Tutti

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] elettromagnetico nel vuoto soddisfi le equazioni delle onde (le equazioni di Maxwell sono un sistema iperbolico, campo A(x), che giocherebbe altrimenti il ruolo di moltiplicatore di Lagrange nel principio variazionale, imponendo vincoli al sistema. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] delle abbreviazioni Lagrange ottenne le equazioni differenziali per s1, u1, s2, u2, … nella forma: Le soluzioni di queste equazioni erano della forma: In tali soluzioni le costanti a, b, c, … rappresentavano le radici di un'equazione di grado n ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] finire del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ( : V=Q(1+R₀R₀(2c2)+...)/(4πε₀R₀). Le equazioni di Maxwell, oltre alla soluzione corrispondente ai p. ritardati ammettono anche ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

energia

Dizionario delle Scienze Fisiche (1996)

energia energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] exergy, per il quale peraltro il termine corrente è exergia (←). ◆ [MCC] E. generalizzata: è un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III 655 a. ◆ [LSF] E. in atto: contrapp. a e. potenziale, v. sopra, nella definizione ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su energia (13)
Mostra Tutti
1 2
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali