Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] non lineari.
La fisica porta, anche, sia ad ‛equazioniintegrali' (v. analisi), sia ad ‛equazioniintegrali alle derivate parziali', cioè contenenti non solo derivate parziali, ma anche integrali, lineari o no. A questo riguardo, il modello più ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] o con il calcolo differenziale e integrale, e non attraeva quindi molta attenzione t e n numeri naturali, e a è un qualsiasi intero non divisibile per p, allora l'equazione a−xn=py ha soluzioni per x e y interi se e solo se at−1=pz è risolubile ...
Leggi Tutto
Combinatoria
Peter J. Cameron
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. Leibniz, sembrò che non è osservabile ed è per questo che le equazioni differenziali danno una buona descrizione dell'Universo. La geometria ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] funzione p. ha per definizione, in un dato punto, l'integrale di linea del vettore del campo dal punto di riferimento A al Nella fisica classica (per es., nel-l'acustica) abbiamo un'equazione di D'Alembert ove al posto della velocità della luce appare ...
Leggi Tutto
energia
energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] si rende l'ingl. exergy, per il quale peraltro il termine corrente è exergia (←). ◆ [MCC] E. generalizzata: è un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III 655 a. ◆ [LSF] E. in atto: contrapp. a e. potenziale, v. sopra ...
Leggi Tutto
forza
fòrza [Der. del lat. fortia, da fortis "forte"] [MCC] In termini elementari, la causa capace di modificare lo stato di quiete o di moto di un corpo; come tale, cioè in relazione alle modificazioni [...] reale risultante (cioè dovuta al-l'interazione con altri corpi) l'equazione del moto relativo, che ha luogo con accelerazione lineare ar, è F. magnetomotrice: in un circuito magnetico, l'integrale di linea dell'intensità magnetica; sua unità di ...
Leggi Tutto
funzione
funzióne [Der. del lat. functio -onis, dal part. pass. functus di fungi "adempiere"] Concetto che s'identifica con quello di applicazione, essendo peraltro preferito se l'insieme di arrivo è [...] . potenziali chimici e termodinamici: IV 573 e. ◆ F. implicita: f. la cui espressione analitica è data dall’equazione F(x1,...xn, y)=0, cioè in forma implicita. ◆F. integrale: di un campo vettoriale X su una varietà V è una f. costante lungo le curve ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] ] V. algebrica: ogni v. definita da un sistema di equazioni algebriche: v. varietà algebrica. La nozione di v. algebrica v. algebrica descritta anche da coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] , teoria del: IV 568 d. ◆ [ANM] Equazione secolare di L.: → secolare. ◆ [GFS] Equazioni mareali di L.: v. maree atmosferiche: III 620 detta trasformata di L. della F(t): v. trasformazioni integrali: VI 303 a. L'operazione e la funzione ora ricordate ...
Leggi Tutto
Gauss Karl Friedrich
Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] [ANM] Equazione ipergeometrica di G.: v. equazioni differenziali ordinarie nel campo reale: II 460 a. ◆ [RGR] Equazioni di G.-Codazzi , n→∞∫n-m exp(-x2) dx=π1/✄; (b) un particolare integrale che dà, a meno del fattore 4π, l'indice di allacciamento, ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...