• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
26 risultati
Tutti i risultati [283]
Fisica matematica [26]
Matematica [122]
Fisica [54]
Biografie [44]
Storia della matematica [40]
Analisi matematica [35]
Storia della fisica [28]
Temi generali [19]
Algebra [19]
Meccanica [17]

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] elettromagnetico nel vuoto soddisfi le equazioni delle onde (le equazioni di Maxwell sono un sistema iperbolico, campo A(x), che giocherebbe altrimenti il ruolo di moltiplicatore di Lagrange nel principio variazionale, imponendo vincoli al sistema. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] delle abbreviazioni Lagrange ottenne le equazioni differenziali per s1, u1, s2, u2, … nella forma: Le soluzioni di queste equazioni erano della forma: In tali soluzioni le costanti a, b, c, … rappresentavano le radici di un'equazione di grado n ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] finire del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ( : V=Q(1+R₀R₀(2c2)+...)/(4πε₀R₀). Le equazioni di Maxwell, oltre alla soluzione corrispondente ai p. ritardati ammettono anche ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

Helmholtz Hermann Ludwig Ferdinand von

Dizionario delle Scienze Fisiche (1996)

Helmholtz Hermann Ludwig Ferdinand von Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante di Lagrange-H., o di Smith-H.: → Lagrange, Giuseppe Luigi ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI AL CONTORNO – POTENZIALI CHIMICI – LAVORO MECCANICO – ELETTRODINAMICA
Mostra altri risultati Nascondi altri risultati su Helmholtz Hermann Ludwig Ferdinand von (1)
Mostra Tutti

parentesi

Dizionario delle Scienze Fisiche (1996)

parentesi parèntesi [Der. del lat. parenthesis, dal gr. parénthesis "inserzione", a sua volta comp. di pará "para-2", én "in" e títhemi "porre"] [ALG] [ANM] Simboli grafici, di varia forma e con particolari [...] P. algebriche); per le p. con nome proprio (p. di Lagrange, di Poisson, ecc.), si rinvia al nome. ◆ P. ad equazioni dimensionali e unità di misura (come in questa Enciclopedia). ◆ [FSD] P. tonde: nella cristallografia, racchiudono i tre indici di ... Leggi Tutto
CATEGORIA: FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA QUANTISTICA – METROLOGIA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su parentesi (2)
Mostra Tutti

principio variazionale

Enciclopedia della Scienza e della Tecnica (2008)

principio variazionale Daniele Cassani Corrispondenza tra le soluzioni di un’assegnata equazione differenziale e i punti critici di un opportuno funzionale. I modelli della fisica matematica sono essenzialmente [...] (o funzionale energia). Per es., le equazioni del moto di un sistema di k particelle di massa mj e con posizione assegnata al tempo t da xj(t)∈ℝ3, j=1,...,k, sono ottenute come equazioni di Euler-Lagrange relative al funzionale dove U rappresenta l ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE – CONDIZIONI AL CONTORNO – FISICA MATEMATICA – PUNTI STAZIONARI – LAGRANGIANA

L'Età dei Lumi: matematica. I Principia di Newton nel Settecento

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento Niccolò Guicciardini I Principia di Newton nel Settecento Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] sostenere, offrendo una risoluzione nei termini dell'integrazione di un'equazione differenziale in coordinate polari, che lui, e non di Lagrange. La meccanica dei 'Principia' I Principia di Newton sono fondati sui tre "assiomi o leggi del moto" di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

LORGNA, Antonio Maria

Dizionario Biografico degli Italiani (2006)

LORGNA, Antonio Maria Ettore Curi Nacque a Cerea, presso Verona, il 18 ott. 1735 da Domenico, ufficiale di cavalleria dell'esercito veneto, e Teodora Quarotrio. Battezzato come Antonio Maria, nelle [...] idrodinamica, come i Bernoulli; delle equazioni di grado superiore al quarto, come Lagrange; della sintesi e analisi dell'acqua, come Lavoisier; di elettricità come É. Bonnot de Condillac; di cartografia come G. Delisle; di canali e istmi come J.-J ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
TAGS: REPUBBLICA DI VENEZIA – ACADÉMIE DES SCIENCES – NAPOLEONE BONAPARTE – METODO SCIENTIFICO – ECONOMIA, POLITICA
Mostra altri risultati Nascondi altri risultati su LORGNA, Antonio Maria (2)
Mostra Tutti

GRAFFI, Dario

Dizionario Biografico degli Italiani (2002)

GRAFFI, Dario Adriano Morando Nacque il 10 genn. 1905 a Rovigo da Michele e da Amalia Tedeschi. Nella città natale frequentò la sezione fisico-matematica dell'istituto tecnico, diplomandosi nel 1921. [...] di storia della scienza (La teoria delle oscillazioni da Lagrange ai giorni nostri, in Atti del Convegno lagrangiano. Atti dell'Accademia delle scienze di circuiti dalla formulazione quasi-stazionaria delle equazioni di Maxwell. Il suo studio, ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA

BURGATTI, Pietro

Dizionario Biografico degli Italiani (1972)

BURGATTI, Pietro Enzo Pozzato Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] . di sc. fis., s. 5, IX [1900], pp. 295-301). In questa parte delle ricerche devono essere messe in luce le indagini sui giroscopi. Prima che il B. iniziasse le sue ricerche, Eulero, Lagrange e Kovalevskij erano riusciti a risolvere le equazioni del ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su BURGATTI, Pietro (1)
Mostra Tutti
1 2 3
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali