potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] finire del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ( : V=Q(1+R₀R₀(2c2)+...)/(4πε₀R₀). Le equazionidi Maxwell, oltre alla soluzione corrispondente ai p. ritardati ammettono anche ...
Leggi Tutto
Helmholtz Hermann Ludwig Ferdinand von
Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante diLagrange-H., o di Smith-H.: → Lagrange, Giuseppe Luigi ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le tradizioni principali della meccanica
Ivor Grattan-Guinness
Le tradizioni principali della meccanica
Branche della meccanica
La meccanica, nel suo ampio spettro di usi, [...] lo 'spirito' della meccanica: per esempio, nelle equazionidi Euler per la rotazione di un corpo continuo i momenti d'inerzia comparivano come costanti di un'integrazione parziale. L'approccio diLagrange costituiva in primo luogo un procedimento ...
Leggi Tutto
Eulero
Eulèro [STF] Forma italianizz. assai frequente del cognome di L. Euler. ◆ [ALG] [MCC] Angoli di E.: terna di angoli con cui s'individua l'orientamento di un solido intorno a un punto o, che è [...] costanti del: IV 122 a. ◆ [MCF] Equazionidi E. fluidodinamiche: le equazioni generali del campo di velocità in un fluido ideale: v. aerodinamica subsonica: I 66 e. ◆ [ALG] Equazionidi E.-Lagrange: le equazioni che hanno per soluzione le traiettorie ...
Leggi Tutto
Chimica
Per la dinamica in chimica ➔ dinamica molecolare.
Economia
Per la dinamica in economia ➔ dinamica economica.
Fisica
Parte della meccanica che studia i movimenti dei corpi in relazione alle cause [...] , fra gli altri, J.-B. D’Alembert, L. Euler, G.L. Lagrange, L. Poinsot, A.-L. Cauchy, G. Bernoulli, K. Gauss. Successivamente con equazioni cardinali della dinamica dei sistemi. Si tratta di due equazioni vettoriali (quindi di sei equazioni ...
Leggi Tutto
statica Parte della meccanica che studia l’equilibrio dei corpi sotto l’azione di determinate sollecitazioni; a seconda del sistema mediante il quale i corpi sono rappresentati si distinguono una s. del [...] Come conseguenza di una successiva elaborazione concettuale a opera soprattutto di G. Lagrange, nella equazioni cardinali della s. (➔ equilibrio). Tale è, per es., il fondamento della s. grafica, la parte della s. che si occupa della risoluzione di ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] e in particolare di meccanica. Si deve qui distinguere la meccanica analitica di Leonhard Euler, Joseph-Louis Lagrange e Pierre-Simon studio dei sistemi diequazioni differenziali, mentre la passione di Klein per le superfici di Riemann lo allontanò ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...