Filosofia
Formulazione logicamente coerente di un insieme di definizioni, principi e leggi generali che consente di descrivere, interpretare, classificare, spiegare fenomeni di varia natura.
Le domande [...] o eliminare connettivi e quantificatori in espressioni date. Una derivazione nel calcolo N di un’espressione A è una successione finita di espressioni ciascuna delle quali o è un’assunzione o è il risultato di un’applicazione della regola del terzo ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] della stabilità delle orbite planetarie nel Sistema solare, già discusso nell'opera di I. Newton, si pose in modo rilevante fin dall'inizio del 17° secolo. Confrontando le osservazioni di Saturno intorno all'anno 1715 con quelle degli anni intorno al ...
Leggi Tutto
Wavelet
Silvia Bertoluzza
Il concetto di wavelet (ondina) fu introdotto per la prima volta dal geofisico francese J. Morlet attorno al 1975. Insieme al fisico francese A. Grossmann, Morlet mise a punto, [...] di fuori di un intervallo di lunghezza L). Questa proprietà è equivalente al fatto che il filtro w. sia di lunghezza finita. È possibile costruire w. di Daubechies con un numero arbitrario di momenti nulli, o con regolarità arbitraria. Il numero di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La matematica negli Stati Uniti
Joseph W. Dauben
La matematica negli Stati Uniti
La matematica all'inizio del secolo
All'inizio del XX sec. [...] a Princeton e Chicago.
Il risultato più notevole raggiunto da un americano prima del 1900 fu la dimostrazione che ogni campo finito è un campo di Galois, presentata da Moore al Congresso di Chicago nel 1893. All'inizio del XX sec., Wedderburn estese ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Bonaventura Cavalieri
Enrico Giusti
Dopo un periodo di assimilazione della matematica classica, che si era protratto per tutto il secolo precedente, il Seicento è caratterizzato da un intenso lavoro [...] somma degli angoli del triangolo e due angoli retti: A=α1+α2+α3−π.
Il Directorium generale uranometricum era già pronto fin dal 1630, ma la peste che allora infuriava in Italia e la lentezza delle operazioni di stampa ne ritardarono la pubblicazione ...
Leggi Tutto
DE MARCHI, Luigi
Paola Gardellini-Ilaria Luzzana Caraci
Nacque a Milano il 16 maggio 1857 da Giovanni e da Caterina Perego; quarto di cinque figli (furono suoi fratelli Emilio, Attilio, Odoardo), riuscì [...] in risposta ad una critica di Oddone, un'estensione della teoria dell'onda di Rayleigh a uno strato di grossezza finita a facce parallele, ed un'interpretazione dei gruppi d'onda così definiti come onde sismiche rivelate dai sismogrammi (Applicazione ...
Leggi Tutto
ottica
òttica [s.f. dall'agg. ottico] [OTT] (a) Parte della fisica che studia i fenomeni relativi all'emissione, alla propagazione e alla ricezione della luce, sia nel vuoto che in mezzi materiali, con [...] di dispersione, d'interferenza e d'interazione con la materia, nei quali gioca un ruolo determinante la lunghezza d'onda finita della luce. ◆ [OTT] [FME] O. fisiologica: lo stesso che o. medica (v. oltre). ◆ [OTT] O. fotonica: lo stesso che o ...
Leggi Tutto
reticolo
retìcolo [Der. del lat. reticulum o reticulus, dim. di rete] [LSF] Sinon. di rete e di reticolato, usato in alcune espressioni tecniche per indicare una struttura che abbia aspetto di rete bi- [...] anelli opachi. Le considerazioni precedenti e le analogie con le lenti possono estendersi anche a sorgenti estese a distanza finita dal reticolo. ◆ [OTT] R. di uno strumento ottico: sistema di tratti rettilinei, o di circonferenze o archi circolari ...
Leggi Tutto
FRATTALI
Luigi Accardi
Nicola Rosato
Il termine ''frattale'' è stato introdotto da B. Mandelbrot nel saggio Les objects fractals (1975) per denotare una vasta classe di modelli matematici i quali, [...] i raggi di un tale ricoprimento, per ogni numero reale d > 0, consideriamo la quantità
dove l'estremo inferiore è preso rispetto a tutti i ricoprimenti finiti di E con sfere di raggi minori di r e dove
γ(d) := [Γ(1/2)]d/Γ(1 + d/2) [2]
e Γ(x) è la ...
Leggi Tutto
L'a. l. costituisce uno strumento matematico di importanza fondamentale in ogni disciplina scientifica. Essa costituisce sia un efficace linguaggio comune con cui formulare problemi di natura diversa, [...] . Importanti progressi sono rappresentati dalla teoria di Kaniel-Paige per lo studio del metodo di Lanczos in aritmetica finita, dal metodo implicitly restarted e il metodo di Jacobi-Davidson.
Problemi lineari ai minimi quadrati
Essi forniscono una ...
Leggi Tutto
finita
s. f. [der. di finire], ant. – Fine: mise mano in altre novelle, e quella che cominciata avea e mal seguita, senza f. lasciò stare (Boccaccio); anche nel senso di morte: Però forse v’aggrada mia f. (Cino da Pistoia).
finita
finità s. f. [dal lat. mediev. finitas, foggiato su infinĭtas «infinità»]. – Nel linguaggio filos., lo stesso che finitezza, nel sign. 2: all’essere finito è essenziale la f., e all’essere infinito la infinità (Rosmini).