Geometria
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] concettualmente la natura a più valori di tale funzione logaritmo complesso. Si è così rilevato che senza quelle :[0,+∞[→P(Rn) è una barriera se, data f:[a,b]⊆[0,+∞[→P(Rn) appartenente a ℱ con f(a)⊆ϕ(a), allora f(b)⊆φ(b). Sia ora E⊆Rn un insieme ...
Leggi Tutto
costruzione geometrica nella geometria euclidea del piano, insieme di operazioni con riga e compasso utilizzate per realizzare la costruzione di una figura, per trovare le soluzioni di un problema, per ricavare le proprietà di un particolare oggetto, per dimostrare proposizioni. ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente di una g. empirica, ... ...
Leggi Tutto
Alain Connes
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl F. Gauss e Georg F. Bernhard Riemann, che presero in considerazione curvature variabili. Essi formularono la geometria intrinseca ... ...
Leggi Tutto
Edoardo Vesentini
Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche hanno ricevuto durante il XIX sec., potrà sembrare giustamente che questo o quello abbiano un'importanza scientifica ... ...
Leggi Tutto
Walter Maraschini
Dalla misura della Terra all'organizzazione degli spazi
La geometria, 'sorella' dell'aritmetica e dell'algebra, è una parte della matematica che oggi si studia a scuola, ma è nata come scienza pratica per misurare i terreni e si è sviluppata come teoria rigorosa in cui tutto deve ... ...
Leggi Tutto
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria L2. 5. Le W*-algebre e la loro teoria L2. 6. I campi quantistici universali liberi. 7. Un esempio: le funzioni non lineari dell'equazione ... ...
Leggi Tutto
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come in effetti tale scienza nacque circa intorno al 1000 a.C. nel delta del Nilo per ridelimitare i terreni a scopi ... ...
Leggi Tutto
P. Morpurgo
Branche della matematica che nel Medioevo costituiscono, con la musica e l'astronomia, le scienze del quadrivium all'interno delle arti liberali, che preparano alla conoscenza di Dio.
Geometria
La g., scienza della misura ("Ma tu hai tutto disposto con misura, calcolo e peso"; Sap. 11, ... ...
Leggi Tutto
Mario Rosati
(XVI, p. 623; App. III, I, p. 724; IV, II, p. 39)
Le ricerche nel campo delle discipline geometriche ricoprono, com'è ormai noto da tempo, un'area sempre più ampia e differenziata all'interno delle ricerche matematiche. Non è facile quindi delineare un panorama complessivo dei progressi ... ...
Leggi Tutto
(XVI, p. 623; App. III, 1, p. 724)
Mario Rosati
L'evoluzione degli studi sulla g. negli ultimi decenni presenta alcuni caratteri comuni ad altri campi della ricerca matematica, come la tendenza all'assiomatizzazione e la sempre maggiore algebrizzazione, ma ha anche alcuni caratteri propri che non ... ...
Leggi Tutto
Michele Rak
Nel corso della comparazione tra l'ordine de li cieli e quello de le scienze la G., una delle scienze del Quadrivio, antica partizione della matematica, viene da D. comparata al cielo di Giove per due proprietadi: l'una sì è che [questo cielo] muove tra due cieli repugnanti a la sua buona ... ...
Leggi Tutto
(XVI, p. 623)
Vittorino DALLA VOLTA
Mario BENEDICTY
In questi ultimi venti anni la g. ha subìto una profonda evoluzione che ne ha mutato molti aspetti, tanto che oggi fra i matematici non vi è assoluto accordo su ciò che va inteso come geometria. Dando alla parola la più ampia accezione, si cercherà ... ...
Leggi Tutto
(gr. γεωμετρία)
Federigo ENRIQUES
Gin. F.
1. Le origini. - Geometria significa etimologicamente "misura della terra", e rimane ancora traccia di questo significato nella denominazione di "geometri" data ai periti agrimensori. Appunto da un problema di catasto Erodoto fa nascere la geometria in Egitto ... ...
Leggi Tutto
VARIAZIONI, CALCOLO DELLE.
Leonida Tonelli
- È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] come per la ricerca dei massimi e minimi della funzionef (x) si pone uguale a zero il eccettuati al più quelli che possono rinchiudersi in una successione d'intervalli di lunghezza complessiva comunque piccola - fy′y′ (x, y0 (x), y0′ (x)) ...
Leggi Tutto
NUMERICI, CALCOLI (XXV, p. 29; App. III, 11, p. 286)
Enzo Aparo
Introduzione. - La nozione di c. n. si può introdurre, facendo riferimento al termine latino calculus (piccola pietra, pedina), nel modo [...] divise:
rispettivamente d'ordine 2, 3, 4, ... relative alla funzionef. vale l'identità:
Se si sopprime al 2° membro l'ultimo una matrice A con m righe ed n colonne a elementi reali o complessi e una matrice B con m righe e 1 colonna (vettore-colonna ...
Leggi Tutto
I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] generali (v. fourier, jean-baptiste-joseph: Serie di Fourier, XV), una funzione periodica di periodo T a valori complessi può essere decomposta tramite la serie di Fourier, come somma infinita di armoniche f(t)=Σ⁺∞ cn e²πi-ntT dove i
n=₋∞
numeri cn ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] una funzione scalare F lungo le traiettorie di un usuale campo hamiltoniano è data dalla parentesi di Poisson
delle funzioniF e tridimensionale S³ come l'insieme di punti (z,w) del piano complesso bidimensionale C² per i quali |z|²1|w|²=1 (C² è ...
Leggi Tutto
LOGICA MATEMATICA
Aldo Marruccelli
Alberto Pasquinelli
(XXI, p. 398; App. II, 11, p. 226; III, 1, p. 999).
Princìpi di logica matematica.
È opportuno premettere all'articolo che dà notizia dei progressi [...] di verità W = {V, F} e dei connettivi enunciativi ¬, ⋀, ⋁, →, ↔, ordinatamente sull'insieme delle "funzioni di verità" {Non, Et tutto rilevanti e complementari nella fattispecie.
La complessa tematica ricorrente entro simile contesto implica sia ...
Leggi Tutto
NUMERI, Teoria dei
Luigi Accardi
(App. IV, II, p. 626)
Gli anni Ottanta hanno visto importanti progressi nella teoria dei numeri. In particolare le linee di tendenza, già emerse alla fine degli anni [...] sostituendo all'espressione un+vn−1 un generico polinomio f(u, v), irriducibile e a coefficienti razionali, concernente l'esistenza di funzioni olomorfe non banali definite sui numeri complessi e a valori in una varietà complessa non singolare) e ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] sole funzioni razionali senza poli sono le costanti, dal che segue che una funzionef è determinata dal suo divisore (f) a di Betti di X.
Ogni varietà abeliana A è un toro complesso. Ciò significa che il suo rivestimento universale è isomorfo, come ...
Leggi Tutto
Scienza indiana. La scienza nella cultura indiana
Frits Staal
La scienza nella cultura indiana
Il concetto di scienza e la classificazione delle scienze
Per designare le conoscenze sistematiche indiane [...] ; naturalmente, la realtà è più complessa di quella descritta da entrambi i f); per poter fare questo dobbiamo partire da f(x) e non da x(f).
L'espressione f(x) presenta la stessa forma della funzione matematica y=f(x). In matematica, la funzionef ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] un ambito più generale ‒ la teoria degli operatori differenziali ellittici tra fibrati vettoriali complessi ‒ il celebre teorema di Lefschetz del punto fisso: se f è una funzione di classe C∞ che applica una varietà differenziabile compatta in sé, il ...
Leggi Tutto
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
complessita
complessità s. f. [der. di complesso1]. – 1. L’esser complesso (nelle varie accezioni dei sign. 1 e 2 di quest’agg.): c. di una questione, di un ragionamento, di una costruzione teorica; c. di un atto giuridico; esaminare una situazione...