STRUTTURA
Natale Gucci
Mario Como
Roberto Capra
Paolo Zellini
(App. II, II, p. 923; III, II, p. 857; IV, III, p. 504)
Ingegneria civile. Strutture di acciaio. - Le più recenti applicazioni delle [...] ,F). Ora in Pfn(E,F) si può definire una funzione parziale Σ (somma) al modo seguente: sia {fi}iεI un insieme di elementi di Pfn(E,F) e sia D(fr)∩D(fs) l' L'esempio più classico è il problema diDirichlet discretizzato su un quadrato, che conduce a ...
Leggi Tutto
GEODESIA (gr. γεωδαισία da γῆ "terra" e δαίω "divido")
Ubaldo BARBIERI
Corradino MINEO
Scienza che abbraccia tutte le teorie che concernono la figura del corpo terrestre, così nell'insieme, come nelle [...] (1894), che si servì elegantemente di particolari funzioni ellissoidali; infine, nello stesso anno, da G. Morera, che trattò un caso più generale. Ma il partito che si poteva trarre dal principio diDirichlet nel problema della forma della Terra ...
Leggi Tutto
TRANSITORÎ, FENOMENI
Giovanni GIORGI
. 1. Si denomina per brevità come "studio dei fenomeni transitorî"; lo studio dell'andamento delle grandezze elettriche, meccaniche e fisiche in generale, quando [...] sopra si è fatto allusione. In effetto, si definisca come funzione fisica una funzionedi variabile reale, che in ogni intervallo finito sia integrabile nel senso di Cauchy-Dirichlet-Lipschitz e che coincida con la derivata del proprio integrale. Sia ...
Leggi Tutto
POTENZIALE
Giovanni GIORGI
Roberto MARCOLONGO
Sin dal 1777 G. L. Lagrange, sviluppando la dottrina matematica dei campi di forza newtoniani, ebbe a rilevare che questa trattazione si può semplificare [...] . Le due equazioni stabilite sono state sfruttate per la risoluzione del problema diDirichlet mediante equazioni integrali di seconda specie di Fredholm (v. armonico: Funzioni armoniche).
La continuità del momento del doppio strato non basta per ...
Leggi Tutto
WIRTINGER, Wilhelm
Matematico, nato a Ybbs, sul Danubio, il 19 luglio 1865. Studiò nelle università di Berlino, Vienna e Gottinga. Professore straordinario nell'università di Innsbruck nel 1895; ordinario [...] algebrica, le equazioni del potenziale e del calore e la funzionedi Green. Meritano anche di essere ricordati alcuni scritti sopra una serie diDirichlet, sulle espressioni differenziali esatte, sulle equazioni algebriche irriducibili a coefficienti ...
Leggi Tutto
PHRAGMÉN, Lars Edvard
Giovanni Lampariello
Matematico, nato a Örebro (Svezia) il 2 ottobre 1863; professore alla scuola politecnica di Stoccolma.
Si debbono al Ph. apprezzate ricerche nel campo della [...] , specialmente riguardanti le funzioni ellittiche, la distribuzione dei numeri primi, la trasformazione di Laplace-Abel, la teoria dell'equazione differenziale di Briot e Bouquet, la dimostrazione del principio diDirichlet, ecc. Ma soprattutto ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] . Applicando i moderni standard di rigore stabiliti da Cauchy, Dirichlet mostra che sotto ipotesi abbastanza generali sulle discontinuità e il numero di oscillazioni, una funzione è rappresentabile mediante una serie di Fourier convergente. La teoria ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] da una serie trigonometrica, passando poi alla definizione di Gustav Peter Lejeune Dirichlet (1805-1859), secondo cui, detto in breve, il concetto generale difunzione è equivalente a quello di una Tabelle arbitraria. Schönflies ricorda quindi l ...
Leggi Tutto
Ordinare il mondo
Paolo Zellini
La matematica intesa come una razionalizzazione dell’esperienza, secondo la concezione del filosofo e matematico italiano Federigo Enriques (1871-1946), ha sempre cercato [...] variazionale. Quest’ultima, nel caso del problema diDirichlet, permette di interpretare la soluzione u come la funzione che minimizza un integrale di energia, secondo il celebre principio diDirichlet. Il metodo di Green è, invece, il modo più ...
Leggi Tutto
Geometria: nuovi orizzonti
Luca Migliorini
I tempi della matematica sono più lunghi di quelli di altre scienze. Per la natura stessa, semplice e fondamentale, degli oggetti studiati (i numeri e le figure [...] che comprende come casi particolari oggetti classici della teoria dei numeri quali i caratteri diDirichlet e le funzioni modulari. Motivare l’emergere di queste nozioni e introdurre gli elementi tecnici necessari significherebbe fare la storia della ...
Leggi Tutto