• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
105 risultati
Tutti i risultati [1848]
Fisica matematica [105]
Diritto [303]
Matematica [250]
Fisica [211]
Biografie [215]
Temi generali [147]
Storia [136]
Analisi matematica [117]
Economia [104]
Arti visive [85]

lineare

Dizionario delle Scienze Fisiche (1996)

lineare lineare [agg. Der. del lat. linearis, da linea] [LSF] Inerente a una linea, in partic : (a) che è costituito o è schematizzabile da una linea (per lo più retta) o che si sviluppa prevalentemente [...] sia minore di m. ◆ [ANM] Integrale l.: lo stesso che integrale curvilineo. ◆ [ALG] [FAF] [INF [f(x)+g(x)]=Af(x)+Ag(x). La derivazione e l'integrazione di una funzione costituiscono due esempi di operatori l.; non è così, per es., per l'operatore ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METROLOGIA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su lineare (2)
Mostra Tutti

Helmholtz Hermann Ludwig Ferdinand von

Dizionario delle Scienze Fisiche (1996)

Helmholtz Hermann Ludwig Ferdinand von Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] al contorno, la distribuzione che soddisfa le equazioni del moto è quella per la quale l'integrale esteso a tutto il volume della funzione di dissipazione (prodotto scalare del gradiente di velocità per sé stesso) ha il valore minimo. ◆ [OTT ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI AL CONTORNO – POTENZIALI CHIMICI – LAVORO MECCANICO – ELETTRODINAMICA
Mostra altri risultati Nascondi altri risultati su Helmholtz Hermann Ludwig Ferdinand von (1)
Mostra Tutti

Legendre Adrien-Marie

Dizionario delle Scienze Fisiche (1996)

Legendre Adrien-Marie Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] in esse si ponga ϑ=š/2, le espressioni ottenute si chiamano integrali ellittici completi di L.; questi ultimi sono importanti in quanto ogni integrale del tipo ∫R(x)P1/2dx, con R funzione razionale e P polinomio in x di terzo o quarto grado privo di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – ÉCOLE POLYTECHNIQUE – COORDINATE SFERICHE – RADICI MULTIPLE – HAMILTONIANA
Mostra altri risultati Nascondi altri risultati su Legendre Adrien-Marie (3)
Mostra Tutti

equazione di Boltzmann

Enciclopedia della Scienza e della Tecnica (2008)

equazione di Boltzmann Anna Vulpiani Descrive l’evoluzione temporale della densità di probabilità P(r,v,t) di trovare una molecola nella posizione r con velocità v al tempo t, in un sistema di N molecole [...] dovuta all’urto tra v1 e v2. Il pedice + nel primo integrale rappresenta la restrizione v12∙σˆ〈0 necessaria perché avvenga l’urto. L v,t) evolve obbedendo all’equazione di Boltzmann, è una funzione non crescente [5] ove il segno di uguale vale solo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI
TAGS: DISTRIBUZIONE DI MAXWELL-BOLTZMANN – FUNZIONE NON CRESCENTE – MATERIALI GRANULARI – EQUAZIONI DI NEWTON – VERSORE
Mostra altri risultati Nascondi altri risultati su equazione di Boltzmann (1)
Mostra Tutti

equazione di Gelfand-Levitan-Marcenko (GLM)

Enciclopedia della Scienza e della Tecnica (2008)

Equazione di Gelfand-Levitan-Marcenko (GLM) Francesco Calogero Equazione centrale nella risoluzione del problema inverso della diffusione nell’ambito della meccanica quantistica non relativistica, ossia [...] 5] e l’equazione GLM si scrive allora come segue: [6] Questa equazione integrale di Fredholm – nella quale la funzione M(x) entra sia come termine noto che come nucleo – determina univocamente la funzione K(x,y) e questa determina a sua volta la ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
TAGS: EQUAZIONE INTEGRALE DI FREDHOLM – EQUAZIONE DI SCHRÖDINGER – MECCANICA QUANTISTICA – DERIVATE PARZIALI – UNITÀ DI MISURA

curva

Dizionario delle Scienze Fisiche (1996)

curva curva [s.f. dall'agg. curvo] [LSF] (a) Nell'uso comune, linea che non sia una retta. (b) In un uso più specifico, sinon. completo di linea, cioè includente anche le rette (ma per una definizione [...] rappresentazione diagrammatica dell'andamento di una grandezza in funzione di altre da cui dipende, sinon. quindi di equazione y=f(x) in x₀; viceversa, la curva data si dice c. integrale della c. derivata: v. meccanica analitica: III 656 f. ◆ [ALG] C ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – OTTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su curva (4)
Mostra Tutti

Dirichlet Peter Gustav Lejeune

Dizionario delle Scienze Fisiche (1996)

Dirichlet Peter Gustav Lejeune Dirichlet 〈diriklé〉 Peter Gustav Lejeune [STF] (Düren, presso Aquisgrana, 1805 - Gottinga 1859) Prof. di matematica nell'univ. di Berlino, succedette a Gauss nell'univ. [...] f(x)=0 per x irrazionale, f(x)=1 per x razionale, che è discontinua ovunque. ◆ [ANM] Integrale di D.: di una funzione f(x) l'espressione (2π)-1∫x+πx-π f(ξ){ sin[(n+1/2)(ξ-x)]/sin[(1/2)(ξ-x)]}dx; rappresenta la somma parziale Sn(x) di una serie ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: DISCONTINUITÀ DI PRIMA SPECIE – SUCCESSIONE MONOTONA – FUNZIONE CONTINUA – SERIE DI FOURIER – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su Dirichlet Peter Gustav Lejeune (3)
Mostra Tutti

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] di R.: v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione zeta di R.: v. funzioni di variabile complessa: II 781 d. ◆ [ANM] Integrabilità secondo R.-Stieltjes: v. misura e integrazione: IV 4 a. ◆ [ANM] Integrale di R.: v. misura e integrazione: IV 3 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] coniugati P e P' è nyα=n'y'α' (v. fig.). ◆ [OTT] Invariante integrale di L.: v. ottica geometrica: IV 384 f. ◆ [MCC] Inversione del teorema di L ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

Dirac Paul Adrien Maurice

Dizionario delle Scienze Fisiche (1996)

Dirac Paul Adrien Maurice Dirac 〈dirèk〉 Paul Adrien Maurice [STF] (Bristol 1902 - m. in Florida 1984) Prof. di matematica nell'univ. di Cambridge (1932); ebbe il premio Nobel per la fisica nel 1933 per [...] quantistica: II 298 d. ◆ [ANM] Delta di D.: lo stesso che funzione delta di D. (v. oltre). ◆ [EMG] Equazione di D.: v. (v. sopra). ◆ [MCQ] Propagatore libero del campo di D.: v. integrale sui cammini: III 232 b. ◆ [FSN] Relazione di D.: v. monopolo ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
TAGS: ELETTRODINAMICA QUANTISTICA – MECCANICA QUANTISTICA – MONOPOLO MAGNETICO – TEORIA DEI CAMPI – COSTANTI FISICHE
Mostra altri risultati Nascondi altri risultati su Dirac Paul Adrien Maurice (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 11
Vocabolario
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
filo-integralista agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali