• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
530 risultati
Tutti i risultati [530]
Matematica [146]
Biografie [66]
Fisica [47]
Temi generali [49]
Economia [43]
Biologia [40]
Diritto [32]
Medicina [32]
Scienze demo-etno-antropologiche [28]
Analisi matematica [32]

funzione polidroma

Enciclopedia della Matematica (2017)

funzione polidroma funzione polidroma o funzione plurivoca, in termini generali, corrispondenza che associa a uno stesso valore della variabile indipendente più valori della variabile dipendente. Si [...] Riemann corrispondente ha ora infiniti rami. Questo tipo di singolarità si incontra quando si determina la funzione primitiva di una funzione analitica ƒ(z) che ammette poli semplici, ognuno dei quali diviene punto di diramazione trascendente per F ... Leggi Tutto
TAGS: FUNZIONI DI VARIABILE COMPLESSA – FUNZIONI DI VARIABILE REALE – RADICE N-ESIMA DELL’UNITÀ – PRIMITIVA DI UNA FUNZIONE – PIANO DI → ARGAND-GAUSS

Taylor, serie di

Enciclopedia della Matematica (2013)

Taylor, serie di Taylor, serie di per una funzione di variabile reale ƒ(x): R → R, dotata di derivate di ogni ordine in un punto x0, è la → serie di potenze Sotto opportune ipotesi essa converge a [...] metodo di → prolungamento dal reale al complesso godono automaticamente della proprietà di essere funzioni analitiche e sono l’unica estensione analitica della funzione reale data. Se l’intervallo di convergenza della serie reale era limitato, la ... Leggi Tutto
TAGS: FUNZIONE DI VARIABILE REALE – SINGOLARITÀ ESSENZIALE – FUNZIONE ESPONENZIALE – FUNZIONE ANALITICA – FUNZIONE POLIDROMA
Mostra altri risultati Nascondi altri risultati su Taylor, serie di (1)
Mostra Tutti

fascio

Enciclopedia della Matematica (2017)

fascio fascio termine usato in matematica con significati diversi. □ In geometria, famiglia di curve o di superfici, ottenuta come combinazione lineare delle equazioni di due curve o due superfici, dette, [...] topologia rispetto alla quale le operazioni algebriche siano continue. Ne è un esempio il fascio dei germi di funzioni analitiche su una varietà complessa (→ germe). La teoria dei fasci fornisce uno strumento per trattare problemi di raccordo tra ... Leggi Tutto
TAGS: SISTEMA DI RIFERIMENTO CARTESIANO – GEOMETRIA PROIETTIVA – COMBINAZIONE LINEARE – GEOMETRIA ALGEBRICA – STRUTTURA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su fascio (1)
Mostra Tutti

Weierstrass, formula di

Enciclopedia della Matematica (2013)

Weierstrass, formula di Weierstrass, formula di in analisi, esprime mediante un prodotto infinito una qualsiasi funzione trascendente intera avente come zeri gli elementi di una successione {an} di numeri [...] un punto di accumulazione al finito, la trascendente intera sarebbe identicamente nulla, per il secondo principio di identità delle → funzioni analitiche. Queste soluzioni sono definite a meno di un fattore che non si annulla mai e che ha la forma eφ ... Leggi Tutto
TAGS: PUNTO DI ACCUMULAZIONE – FUNZIONI ANALITICHE – PRODOTTO INFINITO – PIANO COMPLESSO – TRASCENDENTE

Taylor, formula di

Enciclopedia della Matematica (2013)

Taylor, formula di Taylor, formula di (di grado n) formula che permette di sviluppare una funzione ƒ(x) rispetto alle potenze dell’incremento della variabile. Per una funzione ƒ(x) dotata delle derivate [...] la funzione funzioni in più variabili utilizzando l’espressione dei differenziali per tali funzioni (→ Taylor, polinomio di). La formula di Taylor ha rappresentato la base delle ricerche sulle serie di potenze e della teoria delle funzioni analitiche ... Leggi Tutto
TAGS: POLINOMIO DI TAYLOR – FUNZIONI ANALITICHE – SERIE DI POTENZE

Kuratowski

Enciclopedia della Matematica (2013)

Kuratowski Kuratowski Kazimierz (Varsavia 1896 - 1980) matematico e logico polacco. Si occupò prevalentemente dei fondamenti della topologia riprendendo i risultati della cosiddetta “scuola polacca” [...] molti anni, della rivista «Fundamenta Mathematicae». I suoi principali risultati riguardano le relazioni tra la teoria delle funzioni analitiche e la topologia e nel 1929 dimostrò un teorema, che porta il suo nome, che fornisce una caratterizzazione ... Leggi Tutto
TAGS: SECONDA GUERRA MONDIALE – PRIMA GUERRA MONDIALE – TEORIA DEGLI INSIEMI – MATEMATICA – TOPOLOGIA
Mostra altri risultati Nascondi altri risultati su Kuratowski (3)
Mostra Tutti

serie multipla

Enciclopedia della Matematica (2013)

serie multipla serie multipla serie i cui termini dipendono da due o più indici. Per esempio, una serie doppia ha la forma e il suo valore è dato da L’esistenza di questo limite doppio è garantita [...] serie multiple si estendono in modo naturale a serie di funzioni; in particolare si considerano serie multiple di potenze, che rappresentano gli sviluppi in serie di → Taylor o in serie di → Fourier di funzioni analitiche di più variabili complesse. ... Leggi Tutto
TAGS: TEOREMA DI → RIEMANN-DINI – FUNZIONI ANALITICHE – SERIE DI → FOURIER – SERIE DI → TAYLOR

funzione armonica

Enciclopedia della Matematica (2017)

funzione armonica funzione armonica in un aperto Ω ⊆ Rn è una soluzione dell’equazione di → Laplace Δu = 0. Per n = 2, le funzioni armoniche sono legate alle funzioni analitiche, in quanto se ƒ(z) = [...] u(x, y) + iv(x, y) è analitica, le funzioni u e v sono armoniche, cosiddette coniugate. Una funzione armonica in un dominio Ω e continua nel suo complementare Ω̅ è contemporaneamente subarmonica e superarmonica, e quindi assume sia il massimo sia il ... Leggi Tutto
TAGS: PROBLEMA DI → DIRICHLET – EQUAZIONE DI → LAPLACE – FUNZIONI ANALITICHE – SUBARMONICA

funzione trascendente

Enciclopedia della Matematica (2017)

funzione trascendente funzione trascendente funzione non algebrica, cioè funzione di variabile reale che non è esprimibile a partire dalla sua variabile indipendente tramite semplici operazioni aritmetiche [...] realtà solo nella accezione trascendente intera, con riferimento a una funzione analitica che ammette come unica singolarità (essenziale) il punto z = ∞. Le funzioni analitiche intere hanno raggio di convergenza infinito; K. Weierstrass ha dimostrato ... Leggi Tutto
TAGS: FUNZIONE DI VARIABILE REALE – FUNZIONI GONIOMETRICHE – SINGOLARITÀ ESSENZIALE – OPERAZIONI ARITMETICHE – FUNZIONI ESPONENZIALI

funzione, polo di una

Enciclopedia della Matematica (2017)

funzione, polo di una funzione, polo di una termine utilizzato per le funzioni analitiche (olomorfe). Per una funzione analitica ƒ(z) un polo z0 indica un punto di singolarità isolata per il quale Un [...] un punto di singolarità eliminabile o di singolarità essenziale, per i quali rispettivamente il limite è finito o non esiste (→ funzione analitica). Lo sviluppo in serie di → Laurent di ƒ(z) nell’intorno di z0 contiene un numero finito di termini con ... Leggi Tutto
TAGS: PUNTO DI SINGOLARITÀ – SINGOLARITÀ ISOLATA – FUNZIONE ANALITICA – SERIE DI → LAURENT – SVILUPPO IN SERIE
1 2 3 4 5 6 7 8 ... 10 ... 53
Vocabolario
analìtico
analitico analìtico agg. [dal lat. tardo analytĭcus, gr. ἀναλυτικός, der. di ἀνάλυσις «analisi»] (pl. m. -ci). – 1. Di analisi, che è proprio dell’analisi o procede per via di analisi: metodo a.; studio a.; ricerca a., condotta con minuta...
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali