• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
260 risultati
Tutti i risultati [2332]
Matematica [260]
Diritto [297]
Biografie [291]
Storia [260]
Temi generali [246]
Economia [202]
Arti visive [142]
Fisica [134]
Medicina [128]
Biologia [124]

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] classica u∈C2,α(Ω_) per ogni h∈C0,α(Ω_). Similmente, se p>1 e Wk,p(Ω) denota lo spazio di Sobolev delle funzioni reali u con derivate deboli fino all'ordine k appartenenti a Lp(Ω) e norma [24] formula. e W0k,p(Ω) indica la chiusura in Wk,p ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

differenziale

Dizionario delle Scienze Fisiche (1996)

differenziale differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] ) che, sebbene non corretta, è quella che da un punto di vista storico ha dato vita alla nozione di derivata. Si dice d. secondo di una funzione il d. del d. primo: si indica con d2f; e analogamente, il d. n-esimo, o di ordine n, è il d. del d. (n-1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su differenziale (3)
Mostra Tutti

ottimizzazione

Enciclopedia on line

In matematica applicata, e in particolare nella teoria delle decisioni, problemi di o., le questioni attinenti alla ricerca dei criteri di scelta tra diverse opzioni o di determinazione del valore di particolari [...] legati alla risoluzione di equazioni. Si tratta essenzialmente di modelli con variabili che possono assumere valori reali qualsiasi, funzione obiettivo espressa da una equazione (tipicamente non lineare), non vincolati, oppure con vincoli espressi da ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – MATEMATICA APPLICATA
TAGS: CONTROLLO DEL TRAFFICO AEREO – PROGRAMMAZIONE LINEARE – METODO DEL SIMPLESSO – ALGORITMI GENETICI – CIRCUITI INTEGRATI
Mostra altri risultati Nascondi altri risultati su ottimizzazione (6)
Mostra Tutti

OPERATORI

Enciclopedia Italiana - III Appendice (1961)

OPERATORI Fernando BERTOLINI . 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] ω (k volte) si abbrevia anche in ωk, e per convenzione si pone ω0 = 1. Esempio. - Sia A l'insieme delle funzioni reali delle due variabili reali x e y, indefinitamente derivabili, sia Φ l'insieme {δ/δx, δ/δy}, dove a δ/δx si associ l'applicazione f ... Leggi Tutto

INTEGRAZIONE E MISURA

Enciclopedia Italiana - IV Appendice (1979)

INTEGRAZIONE E MISURA Giorgio Letta . La moderna teoria dell'i. si occupa del concetto generale di "misura" e del concetto di "integrale" relativo a un'arbitraria misura. Essa costituisce una notevole [...] nella tribù di Borel, che assuma valore finito su ogni intervallo limitato, è detta una "m. di Borel" su R. Sia ora Φ una funzione reale crescente, definita in R. Per ogni intervallo aperto T (limitato o no) si denoti con λ(T) l'incremento di Φ su T ... Leggi Tutto

NUMERICI CALCOLI

Enciclopedia Italiana - III Appendice (1961)

NUMERICI CALCOLI (XXV, p. 29) Enzo APARO Generalità. - Il concetto di calcolo numerico si può introdurre da un punto di vista generale, come segue. Un insieme finito di oggetti, un insieme finito di [...] dei gradienti. - Sia A un dominio rettangolare dello spazio reale euclideo Rn; fi (x1, ..., xn) (i = 1, .., n) n funzioni reali continue in A ed F(x1, ..., xn) una funzione reale, definita in A, due volte parzialmente derivabile rispetto alle xi ... Leggi Tutto

OPERATORI; OPERAZIONALE, CALCOLO

Enciclopedia Italiana - IV Appendice (1979)

OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo) Tullio Viola Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] equazioni integrali dei tipi: nelle quali f (x) è la funzione incognita, da ricercarsi nello spazio C0 delle funzioni reali e continue in un intervallo [a, b] dell'asse reale; ϕ(x) è una funzione assegnata in C0, K(x, y) (cosiddetto "nucleo") è una ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] viene meno con gli insiemi più che numerabili. Un insieme di potenza superiore al continuo, come l'insieme delle funzioni reali, "è logicamente definito; ma io mi domando se ne abbiamo una qualche concezione". Sia Borel sia Lebesgue hanno sempre ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo David E. Rowe I problemi di Hilbert e la matematica del nuovo secolo Problemi matematici [...] primi sei. Il XVI problema esamina la topologia delle curve e delle superfici reali, mentre il XVII riguarda la rappresentazione come somma di quadrati di funzioni reali definite positive. L'ultimo problema di questo gruppo riguarda i tipi di gruppi ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] r come r(xl, ..., xn)= (rxl, ..., rxn) (quest'ultimo spazio v. si indica con Rn); le funzioni reali di variabile reale definite nell'intervallo (0,1), ecc. Come conseguenza della definizione, è possibile parlare in uno spazio v., di combinazione ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
1 2 3 4 5 6 7 8 ... 26
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
reale²
reale2 reale2 agg. [dal lat. mediev. realis, der. di res «cosa»]. – 1. Che è, che esiste veramente, effettivamente e concretamente (contrapp., nell’uso com. e generico, a immaginario, illusorio e anche a apparente, ideale, possibile): le mie...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali