L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] gradualmente e, specialmente nella seconda metà del secolo, in relazione all'uso di metodi algebrici nella teoria dei numeri e nella geometria. L'argomento classico della ricerca continuò a essere principalmente lo studio delle equazioni polinomiali ...
Leggi Tutto
spazio
spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] speciale, lo s. torna a essere il luogo geometrico di eventi contraddistinti da tre coordinate spaziali e una P il vettore posizione a di V nel modo seguente: p=O+a: v. varietà algebrica: VI 472 c. ◆ [ANM] S. a n particelle: ciascuno degli s. in ...
Leggi Tutto
cono
còno [Der. del lat. conus, dal gr. kònos] [ALG] La superficie (propr. c. indefinito) che s'ottiene facendo rotare attorno a una retta fissa (asse: d nella fig. 1) una retta avente in comune con [...] si parla di c. finito retto, che è il c. della geometria elementare, da potersi pensare anche come generato dalla rotazione di un la forma conica. ◆ [ALG] Equazione del c.: un'equazione algebrica f(x,y,z)=0 omogenea rispetto alle tre incognite; il ...
Leggi Tutto
Gauss Karl Friedrich
Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] f. ◆ [OTT] Formula di G. per un sistema ottico: v. ottica geometrica: IV 387 c. ◆ [ALG] Formule di G.: v. curve e superfici: I 408 f. ◆ [ALG] Teorema di G. della decomposizione: v. varietà algebrica: VI 472 e. ◆ [ALG] Teorema di G.-Bonnet: v. curve e ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] der Geometrie (“Fondamenti della geometria”, 1899) riformulò la geometria euclidea energia impulso: v. gravitazionale, dinamica del campo: III 83 f. ◆ Teorema della base di H.: v. varietà algebrica: VI 473 a. ◆ Teorema di H. degli zeri: v. varietà ...
Leggi Tutto
gruppi quantistici
Luca Tomassini
Struttura algebrica introdotta e analizzata a partire dagli anni Ottanta del secolo scorso dai matematici russi Ludwig Faddeev e Vladimir Drinfeld e dal giapponese [...] non è isomorfa a F(H) per nessun gruppo H, ma resta comunque un’algebra di Hopf. In accordo con lo spirito della geometria non commutativa, Fq(SL(2,ℂ)) è considerata l’algebra delle funzioni sul gruppo quantistico SLq(2,ℂ). Cosi come SL(2,ℂ) è il ...
Leggi Tutto
topologia
topologìa [Comp. di topo- e -logia] [LSF] Per estensione del signif. nell'algebra (v. oltre), il termine indica anche la forma intrinseca di una struttura, cioè la forma che attiene alle proprietà [...] di tali settori, v. oltre). ◆ [ALG] T. algebrica: lo studio delle proprietà topologiche degli enti geometrici fatto attraverso le equazioni algebriche che li definiscono: v. topologia algebrica. ◆ [STF] [ALG] T. combinatoria e generale: denomin ...
Leggi Tutto
Steiner Jakob
Steiner (o Stainer) 〈stàinër〉 Jakob [STF] (Utzensdorf 1796 - Berna 1863) Prof. di geometria nell'univ. di Berlino (1834). ◆ [ALG] Curva di S. (o, assolut., steineriana s.f.): di una curva [...] algebrica C è la curva ottenuta costruendo anzitutto la rete delle ∞2 polari dei punti del piano rispetto alla curva e poi prendendo la curva jacobiana di tale rete (in altre parole, si tratta del luogo dei punti ciascuno dei quali è doppio per una ...
Leggi Tutto
pitagorico
pitagòrico [agg. (pl.m. -ci) Der. del nome Pitagora] [ALG] Equazione p.: l'equazione algebrica x2+y2=z2 in cui si traduce il teorema di Pitagora, con x e y lunghezza del cateti e z lunghezza [...] del-l'ipotenusa. ◆ [ALG] Forma p.: → riemanniano: Geometria riemanniana. ◆ [ALG] Numeri o terne p.: sono le soluzioni intere positive dell'equazione p.; tali terne (x, y, z) sono tutte e solo quelle espresse dalla formula x=m2-n2, y=2mn, z=m2+n2, con ...
Leggi Tutto
Superficie algebrica del secondo ordine. Sono q., per es., gli ellissoidi (di cui sono un caso particolare le sfere), i paraboloidi, gli iperboloidi.
L’equazione di una q. in coordinate cartesiane è del [...] q. il piano polare di P coincide con il piano tangente alla q. in P.
Le q. dal punto di vista della geometria affine. Le proprietà affini delle q. sono quelle che non si perdono quando si sottoponga la q. a una qualsiasi trasformazione affine: in ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
matematica
matemàtica (ant. e raro mattemàtica) s. f. [dal lat. mathematĭca (sottint. ars), gr. μαϑηματική (sottint. τέχνη); v. matematico]. – 1. a. Originariamente, la scienza razionale dei numeri (aritmetica, intesa come scienza della quantità...