La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] Se l'equazione è in due variabili (come nel caso del problema di Pappo) la soluzione forma un luogo; quindi il geometra costruisce ogni punto che si trova nel luogo scegliendo un valore arbitrario per y e trattando ora l'equazione, che sarà diventata ...
Leggi Tutto
La Rivoluzione scientifica: i protagonisti. Galileo Galilei
William Shea
Galileo Galilei
La formazione e l'insegnamento
Galileo Galilei nacque a Pisa il 15 febbraio 1564 (e non il 18, come riportano [...] i caratteri, ne' quali è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a intenderne umanamente parola" (EN, VI, p. 232). Grassi non lasciò la questione ...
Leggi Tutto
nullita
nullità [Der. del lat. nullitas -atis, da nullus "nessuno"] [LSF] L'essere nullo; raro nel signif. di annullarsi. ◆ [ALG] N. di una trasformazione lineare: è la dimensionalità del nucleo (←) [...] né alla n. di A né a quella di B. La n. di una matrice quadrata A ha un interessante significato geometrico in relazione alle trasformazioni lineari tra spazi vettoriali; precis., se A si pensa come matrice di una trasformazione lineare T tra uno ...
Leggi Tutto
Biologia
C. del plasma germinale
Teoria biologica di M. Nussbaum e A. Weismann, secondo la quale il ‘plasma germinale’, portatore dei caratteri ereditari, contenuto nelle cellule germinali o gameti, non [...] concetto intuitivo di continuità
Nella seconda metà dell’Ottocento è stata data una definizione rigorosa della c. degli enti della geometria elementare. Si è visto che, per es., l’intuizione della c. della retta può essere tradotta in un postulato ...
Leggi Tutto
Vicino Oriente antico. La matematica
Jöran Friberg
La matematica
Gli esercizi metro-matematici nel III millennio
La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] dell'arco o della linea che delimita la figura e che l'area è proporzionale al quadrato di questa lunghezza. Gli enti geometrici che appaiono nelle tavole delle costanti e nei testi dei problemi sono cerchi, semicerchi, figure a forma di barca o di ...
Leggi Tutto
Scienza greco-romana. La matematica nel V secolo
Reviel Netz
La matematica nel V secolo
Il titolo di questo capitolo è di per sé problematico. Decidere se al di là di alcuni lavori isolati si possa [...] dispari è un numero pari’. È possibile che Erodoto si riferisca a questo genere di conoscenze non scritte quando afferma che la geometria proviene dall’Egitto; in tal caso si tratta di qualcosa che è più un’abilità, una tecnica, che una scienza. La ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] se ogni punto sulla retta sia rappresentato da una frazione razionale, o ancora se tutte le lunghezze siano commensurabili tra esse. Fu la geometria a far comprendere che non è così: il teorema di Pitagora, per cui vale c2=a2+b2 per i tre lati di un ...
Leggi Tutto
Teoria matematica della capitalizzazione e attualizzazione; ha come fondamento il fatto che nell’economia mercantile il capitale produce un interesse.
Cenni generali
Per mezzo di funzioni di capitalizzazione [...] processo e W è un moto browniano standard (processo continuo a incrementi indipendenti e normalmente distribuiti). Il moto browniano geometrico è il processo stocastico ipotizzato da F. Black, M. Scholes e R. Merton (➔ Black-Scholes, formula di). Con ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Dal greco all'arabo: trasmissione e traduzione
Roshdi Rashed
Dal greco all'arabo: trasmissione e traduzione
Gli storici delle scienze e della [...] traduzione e dell'innovazione, che si verifica, per citare solamente qualche esempio, in ottica e in catottrica con al-Kindī; nella geometria delle coniche con al-Ḥasan ibn Mūsā e con il suo allievo Ṯābit ibn Qurra (m. 901); nella teoria dei numeri ...
Leggi Tutto
Scienza greco-romana. Archimede
Reviel Netz
Archimede
Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] panico] della città invasa, in mezzo al correre qua e là dei soldati intenti al saccheggio – era tutto preso da figure geometriche che aveva tracciato sulla sabbia, fu ucciso da un soldato che ignorava chi egli fosse; [e si narra che] Marcello provò ...
Leggi Tutto
geometrico
geomètrico agg. [dal lat. geometrĭcus, gr. γεωμετρικός] (pl. m. -ci). – 1. a. Della geometria, relativo alla geometria: figura g.; problema, calcolo, metodo g.; media g.; strumenti g.; disegno g., luogo g., progressione g. (per...
geometra
geòmetra s. m. e f. [dal lat. geomĕtres o geomĕtra, gr. γεωμέτρης; v. geometria] (pl. m. -i). – 1. a. Chi studia, conosce e applica i principî e le regole della geometria: Euclide geomètra (Dante). b. Più comunem., professionista...