Serie storiche, analisi delle
Franco Giusti
Finalità
Una serie storica è un insieme finito cronologicamente ordinato di osservazioni x₁, x₂, x₃,..., xT relative a un carattere X, generalmente equidistanti, [...] = εt e che è sempre invertibile ma non sempre stazionario, tranne nel caso in cui tutti gli zeri del polinomio ϕ(L) di grado p nell'operatore L siano in modulo maggiori di 1. L'andamento di molti fenomeni sociali può rappresentarsi mediante modelli ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] una soluzione per ogni h continua, quando p è un polinomio reale di ordine dispari il cui termine di ordine massimo con Φ: Ω__→C compatta e 0∉f(∂CΩ). Allora, se B(R)⊃Ω__, il grado di Leray-Schauder dLS[I−Φ∘ϱ,B(r)∩ϱ−1(Ω)] è ben definito, indipendente ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] di libertà così introdotti, egli trova condizioni su questi punti affinché la formula di quadratura sia esatta per tutti i polinomi di grado minore o uguale a 2n−1; ciò ottimizza l'approssimazione. Nel caso dell'intervallo [−1,1], al quale ci si ...
Leggi Tutto
L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo
Ivor Grattan-Guinness
Matematica pura e applicata nel XVIII secolo
Nel presente volume la determinazione cronologica 'Settecento' [...] nella teoria delle equazioni, dove furono fatti sforzi per provare il teorema fondamentale secondo cui un polinomio di grado ennesimo aveva n radici, comprese le ripetizioni. Tuttavia, la manipolazione dei numeri complessi poteva provocare ...
Leggi Tutto
Supersimmetria
Francesco Fucito
Augusto Sagnotti
Alla scala delle più piccole distanze esplorate attualmente, dell'ordine di 10−18 m, la materia appare costituita da combinazioni di poche decine di [...] Zumino è possibile introdurre auto-interazioni del campo scalare φ, descritte per esempio da un potenziale, un polinomio in φ di grado superiore a due che la supersimmetria lega ad altre interazioni tra bosoni e fermioni. La struttura del multipletto ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] di operazioni: si costruisce l'algebra A:=G[t,t−1] dei polinomi di Laurent a coefficienti in G (la loop algebra), si considera la questo tipo: si parte da un sistema di equazioni di grado prefissato e in variabili scelte, si pone un problema sul ...
Leggi Tutto
Complessità algoritmica
Fabrizio Luccio
Gli studi di complessità di calcolo si sono sviluppati essenzialmente nella seconda metà del ventesimo secolo. Basati sulla formalizzazione del concetto di algoritmo, [...] l'algoritmo polinomiale mc=knc, ovvero m=k1/cn: un incremento sensibile, benché percentualmente decrescente al crescere del grado c del polinomio. Per l'algoritmo esponenziale abbiamo invece cm=kcn, e cioè m=logck+n, corrispondente a un incremento ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo
Mark Aizerman
Teoria dei sistemi e controllo
La teoria del controllo si è formata, come campo di ricerca indipendente, [...] è l'operatore di derivazione rispetto a t e D(p) e K(p) sono polinomi con coefficienti costanti; il grado del polinomio K(p) è inferiore a quello del polinomio D(p).
Georgij Vladimirovič Šipanov già negli anni Trenta aveva dimostrato che i parametri ...
Leggi Tutto
Scienza greco-romana. Diofanto di Alessandria
Roshdi Rashed
Diofanto di Alessandria
Nel corso degli ultimi decenni la nostra conoscenza dell’opera di Diofanto di Alessandria è cambiata in maniera considerevole, [...]
Data questa nozione di «specie», sarebbe inesatto parlare di polinomio e di equazione polinomiale nell’Aritmetica, nel senso in cui , a equazioni (o a sistemi di equazioni) indeterminate di grado inferiore o uguale al sesto – e, dopo la versione ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] da due rette verticali. Utilizzando questa funzione Dedekind fu in grado di sviluppare una teoria quasi completa per rispondere a domande F(z,w,w′)=0
dove w′=dw/dz e F è un polinomio in w e w′, ha alcune soluzioni; la soluzione generale dipende da ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....