GUERRA MONDIALE, SECONDA
Mentre il conflitto si estendeva così al Pacifico ed all’Indiano, l’anno 1941 si chiudeva con una serie di importanti manifestazioni diplomatiche. Tra il 3 e il 5 dicembre il [...] degli Esteri norvegese, Trygve Lie, si recava nella di von Kluge, forte di 20 divisioni distribuite a cavaliere del corridoio di Danzica, e l’armata di von Küchler, di 10 divisioni, in Prussia orientale. Il secondo gruppodi armate era al comando di ...
Leggi Tutto
MATEMATICA NON COMMUTATIVA
La seconda metà del 20° secolo ha visto lo sviluppo di una molteplicità di ricerche matematiche, alcune motivate da considerazioni puramente interne, altre ispirate da problemi [...] In un certo senso l'oggetto duale dell'algebra universale inviluppante di un'algebra diLie è (approssimativamente) l'anello delle funzioni su un gruppodiLie (associato alla data algebra diLie). In questo caso la moltiplicazione è l'ordinaria ...
Leggi Tutto
INVARIANTE
Ugo Amaldi
Concetto matematico generale, legato a quello di trasformazione e presentatosi spontaneamente sia negli sviluppi teorici della geometria e dell'analisi, sia nelle applicazioni [...] (v. geometria, n. 31, klein). La teoria invariantiva dei gruppi continui, finiti e infiniti, di trasformazioni puntuali e di contatto è stata sviluppata da S. Lie (v. gruppo, nn. 22, 27), il quale ha, in particolare, stabilito per gl'invarianti ...
Leggi Tutto
OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo)
Tullio Viola
Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] ). Come primo esempio accenniamo alle serie diLie (scoperte da Sophus Lie che ne fece applicazione, fra il 1880 e il 1890, alla rappresentazione delle "trasformazioni finite" dei gruppi continui di trasformazioni). Queste si riallacciano alle serie ...
Leggi Tutto
QUARTICHE
Edgardo Ciani
. In matematica un'equazione algebrica in quante si vogliono incognite, come pure una funzione razionale intera o una forma algebrica in quante si vogliono variabili, si dice [...] in sé. Quelle che ammettono un gruppo continuo ∞1 di trasformazioni rientrano in una nota famiglia di curve di Klein e Lie (v. klein, felix).
Invece le quartiche piane con un gruppo finito di trasformazioni proiettive hanno importanza nella teoria ...
Leggi Tutto
KOSZUL, Jean-Louis
Carlo Cattani
Matematico francese, nato a Strasburgo il 3 gennaio 1921. Professore all'università di Strasburgo dal 1956 al 1963, e poi all'università di Grenoble; insignito dell'Ordine [...] su una connessione definita a partire dalle proprietà della derivata covariante (1951), sull'azione differenziale di un gruppodiLie compatto (1953), sulla coomologia degli spazi simpliciali calcolata mediante un complesso doppio (1957), ripresa in ...
Leggi Tutto
VIGELAND, Adolf Gustav
Astrid Schjoldager Bugge
Scultore norvegese, nato a Mandal l'11 aprile 1869. Cominciò la sua carriera come intagliatore di legno; studiò poi la scultura con B. Bergslien e M. [...] quello di Emmanuel Vigeland (1896), di Biørnstierne Biørnson e di H. Ibsen (1901), di Sophus Bugge (1902), di Jonas Lie (1904), a Oslo, ricca digruppidi pietra e di bronzo e caratterizzata da una colonna di granito, formata di corpi umani scolpiti ...
Leggi Tutto
SYLOW, Peter Ludvig Mejdell
Giulio Vivanti
Matematico, nato a Cristiania (Oslo) il 12 dicembre 1832, morto ivi il 7 settembre 1918. Entrato nell'insegnamento medio a Fredrikshald nel 1858, vi rimase [...] della teoria dei gruppidi ordine finito: 1. Se l'ordine n d'un gruppo G è divisibile per pr, dove p è primo, il gruppo G contiene sottogruppi collaborò con S. Lie dal 1873 al 1881 nella preparazione della seconda edizione delle opere di N. H. Abel ...
Leggi Tutto
FUBINI, Guido
Matematico, nato a Venezia il 19 gennaio 1879, laureato nell'Università di Pisa, professore nelle università di Catania e Genova; ha ora la cattedra di analisi matematica nella Regia Scuola [...] delle scienze.
In un primo gruppodi ricerche nell'indirizzo gruppale di S. Lie il F. condusse a termine la risoluzione di varî problemi, quali la determinazione degli spazî che ammettono un gruppo continuo di movimenti e degli spazî che ammettono ...
Leggi Tutto
rappresentazioni, teoria delle
rappresentazioni, teoria delle branca dell’algebra che studia le rappresentazioni di strutture algebriche su spazi vettoriali. Essa presenta a sua volta sottospecializzazioni [...] a seconda della struttura algebrica rappresentata (gruppi, algebre, algebre diLie), del tipo di spazio vettoriale su cui si rappresenta (se è finito, se è uno spazio di Hilbert, di Banach) e del campo su cui è definito lo spazio vettoriale (il campo ...
Leggi Tutto