• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
23 risultati
Tutti i risultati [35]
Matematica [23]
Geometria [10]
Fisica [6]
Biologia [5]
Fisica matematica [5]
Medicina [5]
Biografie [4]
Antropologia fisica [4]
Astronomia [3]
Storia della biologia [3]

Geometria

Enciclopedia della Scienza e della Tecnica (2007)

Geometria Edoardo Vesentini Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] gruppo di coomologia di de Rham, discende dal teorema di de Rham astratto, in base al quale i gruppi di coomologia di X a valori in ℱ  sono isomorfi ai gruppi di inclusioni X1→X e X2→X siano equivalenze di omotopia, allora X1 e X2 sono diffeomorfe. ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – SPAZIO TOPOLOGICO COMPATTO – GEOMETRIA DIFFERENZIALE – ALEXANDER GROTHENDIECK – FRIEDRICH HIRZEBRUCH
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] ad uno spazio topologico X. I più importanti sono: i gruppi di coomologia Hn(X), i gruppi di omologia n(X) e i gruppi di omotopia πn(X), che, ad eccezione di π1(X) (il gruppo fondamentale), sono tutti abeliani. Essi hanno dei legami tra loro ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] Smale, USA, University of California, Berkeley, per avere dimostrato che una varietà differenziabile con gli stessi gruppi di omotopia di una sfera di dimensione n è omeomorfa alla sfera. 1967 Nobel per la fisica Hans Albrecht Bethe, USA (Germania ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] degli integrali armonici. Jean-Pierre Serre, Francia, Collège de France, Parigi, per le ricerche di topologia algebrica, in particolare sui gruppi di omotopia delle sfere a n dimensioni. 1955 Nobel per la fisica Willis Eugene Lamb, USA, Stanford ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] assieme al seguente semplice lemma: [36] Un gruppo connesso può agire soltanto banalmente su una teoria coomologica invariante per omotopia si dimostra (Connes 1983c) che per ogni foliazione F di codimensione uno su una varietà compatta V con ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] i coefficienti della serie stessa. D'ora in poi si supporrà che tutti i gruppi di omologia di grado pari siano generati da classi di omologia di sottovarietà analitiche della varietà ambiente V. Ritornando alle notazioni della sezione precedente, sia ... Leggi Tutto
CATEGORIA: GEOMETRIA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] omotopia. Questo fatto ha molte applicazioni importanti per lo studio della coomologia: ne menzioneremo solamente due. Prima di tutto la coomologia degli spazi simmetrici compatti G/H secondo Cartan (1929) si ottiene considerando l'azione del gruppo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

cobordismo

Enciclopedia on line

In matematica, nella topologia differenziale, teoria del c. (ideata da R. Thom attorno al 1954): se si considera la totalità delle varietà differenziabili compatte, prive di frontiera e aventi una stessa [...] , per ogni valore della dimensione n, a due gruppi abeliani detti gruppi di cobordismo. Si dimostra ( teorema di Thom) che essi sono isomorfi a certi gruppi di omotopia; per quanto riguarda poi i gruppi di c. che attengono alle varietà orientate, se ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: RELAZIONE DI EQUIVALENZA – GRUPPI ABELIANI – MATEMATICA – ISOMORFI

Bott, Raoul

Enciclopedia on line

Bott, Raoul Matematico ungherese (Budapest 1923 - San Diego 2005). Dal 1959 è stato prof. alla Harvard University, è uno dei più insigni cultori di geometria delle varietà differenziabili. Il fondamentale teorema [...] ortogonale O a infinite dimensioni; esso afferma che i gruppi di omotopia πm+2 (U) e πm (U) sono isomorfi per ogni valore di m e valgono 0 se m è pari e Z se m è dispari mentre per il gruppo O si ha un periodo di lunghezza 8 nel senso che πm+8 (O)∿πm ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SAN DIEGO – UNGHERESE – GEOMETRIA – BUDAPEST

Kuiper, Nicolaas Hendrik

Enciclopedia on line

Matematico nederlandese (Rotterdam 1920 - Heteren, Paesi Bassi, 1994). Prof. all'univ. di Amsterdam (dal 1962), direttore (dal 1971) dell'Institut des hautes études scientifiques di Bures-sur-Yvette. Apportò [...] notevoli contributi alla topologia differenziale (immersioni isometriche di una varietà in un'altra), alla teoria dell'omotopia (gruppi di omotopia del gruppo unitario negli spazî di Hilbert), alla statistica matematica e a varie applicazioni alle ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SPAZIO EUCLIDEO – NEDERLANDESE – PAESI BASSI – MATEMATICA – ROTTERDAM
1 2 3
Vocabolario
omotopìa
omotopia omotopìa s. f. [comp. di omo- e gr. τόπος «luogo»]. – 1. In matematica, la corrispondenza generata tra due catene di un complesso quando la prima può variare con continuità nella seconda; più intuitivamente, per una superficie dello...
depòṡito
deposito depòṡito s. m. [dal lat. deposĭtum, part. pass. neutro sostantivato di deponĕre «deporre»]. – 1. a. Atto con cui si depone un oggetto in un luogo o lo si affida a una persona, perché venga custodito e riconsegnato a un’eventuale richiesta...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali