Krein Mark Grigorjevich
Krein 〈kràin〉 Mark Grigorjevich [STF] (n. 1907) ◆ [ANM] Teorema di K.-Milman: se K è un insiemeconvesso compatto contenuto in uno spazio vettoriale normato con x∈k punto estremale, [...] se x=(1-t)x₀+tx₁ con t∈(0,1) e x₀, x₁∈K implica x₀=x₁=x, allora K coincide con l'inviluppo convesso chiuso dei suoi punti estremali. ...
Leggi Tutto
convessoconvèsso [agg. Der. del lat. convexus, da convehere "raccogliere insieme, condurre"] [LSF] Che si presenta ricurvo all'infuori come, per es., l'esterno di una sfera; è il contrario di concavo. [...] ovunque derivata seconda positiva; quest'ultima proprietà è a volte usata come definizione di funzione convessa. ◆ [ALG] Insieme c.: sottoinsieme C di un insieme An tale che il segmento congiungente due punti arbitrari di esso è contenuto in C. Per ...
Leggi Tutto
giòchi, teorìa dei Modello matematico per lo studio delle 'situazioni competitive', in cui cioè sono presenti più persone (o gruppi di persone, o organizzazioni) dette appunto 'giocatori', con autonoma [...] di impossibilità.
Un problema di contrattazione, secondo Nash, può essere descritto da un insieme compatto convesso C del piano, e da un punto d dell’insieme stesso. Un elemento x=(x1,x2)∈C rappresenta una distribuzione di utilità possibili fra ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] W→V′, con la proprietà che per ogni x ∈ V la restrizione di π′ all’insieme π−1(x) è una mappa biunivoca di π−1(x) su V′, mentre la mappa s. vettoriale topologico detto convesso se in ogni punto esiste una base di intorni convessi.
Per s. di Minkowski ...
Leggi Tutto
Economia
P. economica Il complesso degli interventi dello Stato nell’economia, realizzati spesso sulla base di un piano pluriennale (in questo senso il termine si alterna, nell’uso, con pianificazione). [...] gm(x1, …, xn)≥0, x1≥0, …, xn≥0, devono verificare, insieme con le quantità l1, …, lm (moltiplicatori di Lagrange) le relazioni:
Le condizioni di Kuhn-Tucker sono sufficienti quando la f è funzione convessa, ossia il suo diagramma nello spazio a n+1 ...
Leggi Tutto
Il c. delle v. è quell'area della matematica definita dal seguente problema: determinare, in una famiglia assegnata di oggetti, quello che rende minima (oppure massima) una certa grandezza. Gli oggetti [...] di tutti gli altri. Tuttavia ciò non è più necessariamente vero per insiemi infiniti di numeri, e quindi non è detto che in una classe per alcune classi di problemi convessi. Per i problemi di tipo non convesso può accadere che l'equazione di ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] completa dell'esistenza della soluzione per ogni dominio Ω convesso e limitato e per ogni funzione continua φ. Se f₁(D₁) ⊂ D₂ e se l'immagine f₁(D₁) non è contenuta nell'insieme dei poli di f₂ così che è definita la funzione meromorfa f₂ o f₁:D ...
Leggi Tutto
PROGRAMMAZIONE LINEARE
Amato HERZEL
Claudio NAPOLEONI
. 1. - Generalità e posizione del problema. - Sotto l'aspetto matematico, il termine p. l. indica una classe di problemi consistenti nella ricerca [...] che le variabili risultino limitate, secondo un "poliedro convesso". Le soluzioni-base accettabili corrispondono ai vertici del poliedro o l'uso di un fattore da parte dell'insieme delle attività simultaneamente esercitate è uguale alla somma delle ...
Leggi Tutto
OPERATIVA, RICERCA
Lucio Bianco-Mario Lucertini
(App. III, II, p. 315; IV, II, p. 669)
Premessa. − La r.o. è una disciplina che, a partire da radici culturali diversificate, ha acquisito soltanto negli [...] Un caso di particolare significato è quello dei problemi convessi, in cui ottimi locali e globali coincidono. Gli di problemi con variabili che possono assumere solo valori in un insieme discreto (spesso finito, per es. formato dai soli valori 0 ...
Leggi Tutto
NUMERICI, CALCOLI (XXV, p. 29; App. III, 11, p. 286)
Enzo Aparo
Introduzione. - La nozione di c. n. si può introdurre, facendo riferimento al termine latino calculus (piccola pietra, pedina), nel modo [...] xj (i, j = 1, ..., n) esistano in un certo aperto convesso C0 ⊆ Rn, indicheremo con f′ (x) la matrice (jacobiana) che ²2 e lo spazio vettoriale F di tutte le funzioni continue in D insieme alle loro derivate parziali prime e seconde, e nulle su ∂D, il ...
Leggi Tutto
convesso
convèsso agg. [dal lat. convexus «ricurvo», der. di convehĕre «raccogliere insieme, condurre», comp. di con- e vehĕre «trasportare»]. – In genere, di corpo che si presenta ricurvo come la parte esterna di un cerchio o di una sfera...
involucro
invòlucro (ant. o poet. involùcro) s. m. [dal lat. involŭcrum, der. di involvĕre «involgere»]. – 1. Con sign. generico, ciò che involge un oggetto, costituendo per esso un rivestimento, un riparo, una custodia e sim.; di oggetti...