• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
98 risultati
Tutti i risultati [98]
Matematica [46]
Analisi matematica [19]
Biografie [9]
Fisica [10]
Fisica matematica [9]
Statistica e calcolo delle probabilita [6]
Storia della matematica [7]
Geometria [5]
Meccanica quantistica [5]
Algebra [4]

ARITMETICA

Enciclopedia Italiana (1929)

Il termine aritmetica fu usato per la prima volta dai pitagorici per distinguere la scienza dei numeri dalla mera pratica del calcolo per mezzo di operazioni elementari, o logistica (λογιστική). Secondo [...] una ed una sola funzione f-1, detta la coniugata o l'inversa integrale di f che soddisfa alla condizione f × f-1 = a; essa è di ricorrenza per la risoluzione della prima furono indicate da V. A. Lebesgue; esse però hanno l'inconveniente di ... Leggi Tutto
TAGS: GRANDEZZA DIRETTAMENTE PROPORZIONALE – DISTRIBUZIONE DEI NUMERI PRIMI – SISTEMI DI EQUAZIONI LINEARI – INTERPOLAZIONE DI LAGRANGE – FUNZIONE RAZIONALE INTERA
Mostra altri risultati Nascondi altri risultati su ARITMETICA (7)
Mostra Tutti

FUNZIONE

Enciclopedia Italiana (1932)

FUNZIONE Leonida TONELLI Salvatore PINCHERLE . Introduzione. - Una variabile numerica, che dipenda da altre variabili numeriche, si dice funzione di queste ultime. Il concetto di funzione è oggi [...] , calcolo). Fra queste definizioni, le più notevoli sono quelle di Mengoli-Cauchy (detta, da molti, di Riemann), di Lebesgue e di Denjoy. La nuova funzione si chiama funzione integrale della f(x). In ogni punto in cui la f(x) è continua, la derivata ... Leggi Tutto
TAGS: CALCOLO DELLE PROBABILITÀ – PUNTO Α DI DISCONTINUITÀ – CONDIZIONE DI LIPSCHITZ – GEOMETRIA DIFFERENZIALE – EQUAZIONE DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su FUNZIONE (8)
Mostra Tutti

CURVE

Enciclopedia Italiana (1931)

. Nell'uso comune della parola, "curva" significa linea non retta e non composta di linee rette. Già Parmenide d'Elea, secondo Proclo nel Commento all'Euclide, distingueva le linee in rette, curve e miste. [...] da D'Alembert. L'integrale di Bernoulli, dicevano, non può essere l'integrale generale, altrimenti una curva condizione porti l'esistenza delle tangenti, ecc. Un teorema di H. Lebesgue (1904) risponde al problema insegnandoci che "una curva ... Leggi Tutto
TAGS: EQUAZIONE A DERIVATE PARZIALI – TEORIA GENERALE DEI SISTEMI – FORMULE DI FRENET-SERRET – CORRISPONDENZA BIUNIVOCA – FUNZIONE RAPPRESENTABILE

FUNZIONALE, ANALISI

Enciclopedia Italiana - IV Appendice (1978)

FUNZIONALE, ANALISI (v. funzionali, XVI, p. 180) Tullio Viola Portano questo nome gli sviluppi più moderni dell'analisi matematica, generati dalla fecondazione che le teorie classiche hanno ricevuto [...] metrica di Lagrange". Sia CL tale spazio, che si dice ottenuto introducendo in S la "metrica di Lebesgue". Se consideriamo la successione di l'unicità della soluzione d'una generica equazione integrale di volterra di 2ª specie. Ma, nell'a. f., ... Leggi Tutto
TAGS: SPAZIO VETTORIALE NORMATO – EQUAZIONE DIFFERENZIALE – TRASFORMAZIONE LINEARE – GEOMETRIA ANALITICA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su FUNZIONALE, ANALISI (2)
Mostra Tutti

MATEMATICA

Enciclopedia Italiana - III Appendice (1961)

MATEMATICA (XXII, p. 547 e App., II, 11, p. 276) Francesco G. TRICOMI Gli sviluppi più recenti della m. saranno qui presi in esame soprattutto nelle loro linee generali e nei loro mutui rapporti; per [...] L2) costituito dalle funzioni ϕ(x) integrabili (nel senso di Lebesgue) insieme col loro quadrato in un intervallo (a, b funzione f(x) dello spazio L2 che ne consente la rappresentazione integrale [1]. Ebbene, anche quando ciò non si verifica, si dirà ... Leggi Tutto
TAGS: PRINCIPIO DEL TERZO ESCLUSO – CALCOLO DELLE PROBABILITÀ – GEOMETRIA DIFFERENZIALE – TEORIA DELLA RELATIVITÀ – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su MATEMATICA (14)
Mostra Tutti

VARIAZIONI, CALCOLO DELLE

Enciclopedia Italiana (1937)

VARIAZIONI, CALCOLO DELLE. Leonida Tonelli - È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] da D. Hilbert, B. Levi, G. Fubini, H. Lebesgue, S. Zaremba e altri. Tuttavia in questo nuovo indirizzo si ) è sempre ∣ y (x) − y0 (x) ∣ ≤ ρ. L'integrale ha un valore finito per ogni y (x) o curva C di S-80???, e viene indicato con I [y (x)] o con I [C ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VARIAZIONI, CALCOLO DELLE (4)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] 'integrazione non commutativa', che include la teoria astratta di Lebesgue ed è molto più potente della teoria della generale integrazione della C*-algebra, come conseguenza dell'invarianza unitaria dell'integrale nella teoria della W*-algebra. 6. I ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

PEANO, Giuseppe

Dizionario Biografico degli Italiani (2015)

PEANO, Giuseppe Clara Silvia Roero PEANO, Giuseppe. – Nacque a Spinetta, nei pressi di Cuneo, il 27 agosto 1858, secondogenito di Bartolomeo e di Rosa Cavallo, proprietari terrieri. Frequentò le scuole [...] adottare il ricorso ai ricoprimenti; Henri Lebesgue, nella tesi di dottorato dove espose la sua teoria di Peano questo tipo di studi proseguì con la generalizzazione a sistemi di infinite equazioni differenziali ed equazioni integrali, nella tesi di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: JOHANN PETER GUSTAV LEJEUNE DIRICHLET – CENTRO DI DOCUMENTAZIONE TERRITORIALE – ACCADEMIA DELLE SCIENZE DI TORINO – FUNZIONE DI PIÙ VARIABILI – GEOMETRIA DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su PEANO, Giuseppe (6)
Mostra Tutti

CACCIOPPOLI, Renato

Dizionario Biografico degli Italiani (1973)

CACCIOPPOLI, Renato Alessandro Figà Talamanca Nacque a Napoli il 20 genn. 1904. Suo padre, Giuseppe, era un noto chirurgo napoletano, sua madre, Sofia, era figlia del celebre rivoluzionario russo Michail [...] definiti sullo spazio delle funzioni continue di variabile reale. Le ricerche sull'integrale di Stieltjes e di Lebesgue conducono il C. a uno studio di tutta la teoria dell'integrazione dal punto di vista del prolungamento dei funzionali. Egli ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DELLE VARIAZIONI – TEORIA DELL'INTEGRAZIONE – INTEGRALE DI STIELTJES – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su CACCIOPPOLI, Renato (4)
Mostra Tutti

Sistemi dinamici

Enciclopedia del Novecento II Supplemento (1998)

Sistemi dinamici Giovanni Jona-Lasinio Ya. G. Sinai Origini e sviluppo, di Giovanni Jona-Lasinio Risultati recenti, di Ya. G. Sinai Origini e sviluppo di Giovanni Jona-Lasinio SOMMARIO: 1. Introduzione.  [...] aiuto della nozione di ‛integrale primo'. Una funzione I (x) è detta integrale primo se I di valori di a per cui Ta possiede una misura invariante assolutamente continua ha misura di Lebesgue positiva. Una simile dimostrazione per le trasformazioni di ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – SOTTOINSIEME DI MISURA NULLA – DISTRIBUZIONE DI PROBABILITÀ – SISTEMI DI EQUAZIONI LINEARI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali