• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
28 risultati
Tutti i risultati [68]
Matematica [28]
Fisica [28]
Analisi matematica [15]
Fisica matematica [15]
Temi generali [13]
Statistica e calcolo delle probabilita [12]
Meccanica quantistica [11]
Algebra [11]
Ingegneria [8]
Meccanica [8]

Ito Kiyosi

Dizionario delle Scienze Fisiche (1996)

Ito Kiyosi Ito Kiyosi [STF] (n. Tokyo 1915) Prof. di matematica nell'univ. di Tokyo. ◆ [PRB] Calcolo differenziale stocastico di I.: v. equazioni differenziali stocastiche: II 468 a. ◆ [PRB] Equazione [...] PRB] Formula di I.-Girsanov: v. equazioni differenziali stocastiche: II 473 e. ◆ [PRB] Integrale stocastico di I.: v. diffusione, teoria della: II 172 a. ◆ [PRB] Integrale stocastico sui cammini di I.: v. geometria differenziale stocastica: III 38 f. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su Ito Kiyosi (3)
Mostra Tutti

COMPLESSITA'

Enciclopedia Italiana - VI Appendice (2000)

Il termine complessità è oggi frequentemente usato, in campo scientifico, in contesti diversi. In quello dell'informatica, dell'analisi numerica e dell'ottimizzazione, corrisponde alla caratteristica quantitativa [...] considerare piuttosto grande, pur in presenza di incertezze sui valori in t₀. Invece il punto c, caratterizzato per i quali l'uscita è l'integrale dell'ingresso), ciò non di meno il dei sistemi. Non tutti i cammini evolutivi sono dunque possibili ma ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: SENSIBILITÀ ALLE CONDIZIONI INIZIALI – TEORIA SINTETICA DELL'EVOLUZIONE – MEZZI DI COMUNICAZIONE DI MASSA – CORRISPONDENZA BIUNIVOCA – EQUAZIONE DIFFERENZIALE

Probabilita

Enciclopedia del Novecento (1980)

Probabilità Gian-Carlo Rota e Joseph P.S. Kung *La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi. sommario: 1. Introduzione. [...] 3F2. In generale, per insiemi convessi K, gli integrali Jn sono molto più facili da calcolare che gli di una passeggiata aleatoria simmetrica sui punti interi del piano, che elementare è l'insieme di tutti i cammini per i quali la particella è nello ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – MATRICE DELLE PROBABILITÀ DI TRANSIZIONE – EQUAZIONE ALLE DERIVATE PARZIALI – LEGGE DEBOLE DEI GRANDI NUMERI – TEORIA QUANTISTICA DEI CAMPI
Mostra altri risultati Nascondi altri risultati su Probabilita (12)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] " e non sempre ‟seguendo i cammini più brevi". Nel caso della propagazione definita nel modo seguente: un converge a u in Lp (Ω) se l'integrale ∫Ω ∣ un (x) - u (x)∣p dx tende a zero per di cerchio che giacciono sui piani ortogonali alla direttrice ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] altra parte, è all'inizio del XIX sec. che il dibattito sui numeri complessi si fa più acceso. Si potrebbe supporre che tale la prima volta, e di qui l'idea di integrale curvilineo lungo un cammino nel piano complesso. L'utilità del calcolo dei ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] senza la richiesta che le ragazze debbano camminare in fila per tre in cinque di Neil Robertson e Paul D. Seymour (e di altri) sui minori dei grafi. Un minore di un grafo è un sviluppo del calcolo differenziale e integrale di Newton e Leibniz, sembrò ... Leggi Tutto
CATEGORIA: ALGEBRA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] anni trenta che l'insieme dei cammini definito dalla condizione {x(τ)≤ valor medio non condizionato si deve mediare sui possibili valori di v0; si pone allora ottiene t. Tutto si semplifica notevolmente per gli integrali del tipo (79) se, per esempio, ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

Combinatoria

Enciclopedia della Scienza e della Tecnica (2007)

Combinatoria Peter J. Cameron Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] la richiesta che le ragazze debbano camminare in fila per tre in cinque seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. in cui lo spazio consta di funzioni sui naturali o sugli interi e la trasformazione ... Leggi Tutto
CATEGORIA: ALGEBRA – ARITMETICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA DELLE RAPPRESENTAZIONI – INSIEMI PARZIALMENTE ORDINATI – PROBLEMA DEI QUATTRO COLORI – FONDAMENTI DELLA MATEMATICA
Mostra altri risultati Nascondi altri risultati su Combinatoria (4)
Mostra Tutti
1 2 3
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali