Rivista di studi biblici fondata da J.-M. Lagrange nel 1892. Organo ufficiale dell’École pratique d’études bibliques, con sede nel convento domenicano di S. Stefano a Gerusalemme. ...
Leggi Tutto
lagrangianolagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] ◆ [MCC] Azione l.: → azione: A. di un sistema. ◆ [MCC] Coordinata l.: ciascuna delle variabili che compaiono nelle equazioni di Lagrange: v. cinematica: I 593 c; per quelle ignorabili, o cicliche: v. meccanica analitica: III 655 a. ◆ [MCC] Derivata l ...
Leggi Tutto
L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
Craig Fraser
Michiyo Nakane
La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
La teoria di Hamilton-Jacobi, [...] an rappresentassero i valori di q1,…,qn per t=0, e b1,…,bn i valori di p1,…,pn per t=0, Lagrange ottenne le equazioni differenziali del moto perturbato nella forma seguente:
In letteratura è invalsa l'abitudine di chiamare 'canonica' ogni equazione ...
Leggi Tutto
POTENZIALE
Giovanni GIORGI
Roberto MARCOLONGO
Sin dal 1777 G. L. Lagrange, sviluppando la dottrina matematica dei campi di forza newtoniani, ebbe a rilevare che questa trattazione si può semplificare [...] punto potenziato esterno era di gran lunga più complicato di quello del punto interno. Iniziato coi lavori di C. Maclaurin, G. Lagrange, A.-M. Legendre, ottenne la sua completa soluzione per opera di P.-S. Laplace. I matematici posteriori J. Ivory, P ...
Leggi Tutto
Formalismo lagrangiano
Luca Tomassini
Un approccio alla meccanica newtoniana sviluppato da Joseph Lagrange per superare due delle sue principali limitazioni: da un lato l’estrema difficoltà nel trattare [...] del sistema, V la sua energia potenziale e q∙∥ indica le cosiddette velocità generalizzate. È questa la funzione di Lagrange o lagrangiana, che nel caso di un sistema di N punti materiali (nello spazio tridimensionale ordinario) sottoposti a k ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] sostituita dalla:
[5*] Lj(xi,yi,zi)≤0 j=1,…,m(m<3n).
Il principio delle velocità virtuali nella forma di Lagrange [4] va allora generalizzato nel senso che il momento totale o il lavoro virtuale nel caso dell'equilibrio non si annulla, ma (con ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] 3 è esprimibile in termini di (1−2qcosθ+q2)−λ, dove q=a′/a⟨1 e λ assume i valori 3/2, 5/2, 7/2, … Lagrange scrisse la precedente espressione nel prodotto di due fattori complessi:
[31] [1q(cosθ+i senθ)]-λ[1-q(cosθ-i senθ)]-λ,
dove
Usando il teorema ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...