{{{1}}}
Matematico italiano (Torino 1736 - Parigi 1813), di famiglia d'origine francese. Indirizzato dal padre verso gli studî legali, si iscrisse a quattordici anni all'univ. di Torino, iniziando anche lo studio della matematica. Lesse gli Elementi di Euclide e l'Algebra di A.-C. Clairaut e poi, in meno di due anni, le Instituzioni analitiche di M. G. Agnesi, l'Introductio in analysin infinitorum ...
Leggi Tutto
equazione di Euler-Lagrange
Daniele Cassani
Per funzioni reali di variabile reale f: ℝ→ℝ una condizione necessaria per avere un massimo o un minimo in un punto x0 dove f è derivabile, è che x0 risolva [...] massimo, un minimo o più in generale un punto critico per il funzionale F, è che z risolva l’equazione di Euler-Lagrange
Al di là dell’analogia con la precedente, l’importanza di questa equazione differenziale (che si estende al caso di funzionali ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] ∙3,… e così via. Lo sviluppo
[2] f(x+i)=f(x)+if'(x)+i2f"(x)/2+i3f"'(x)/2∙3…
aveva agli occhi di Lagrange il vantaggio di mostrare come i termini della serie dipendano l'uno dall'altro e "soprattutto, una volta che si sappia ottenere la derivata prima ...
Leggi Tutto
lagrangianolagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] ◆ [MCC] Azione l.: → azione: A. di un sistema. ◆ [MCC] Coordinata l.: ciascuna delle variabili che compaiono nelle equazioni di Lagrange: v. cinematica: I 593 c; per quelle ignorabili, o cicliche: v. meccanica analitica: III 655 a. ◆ [MCC] Derivata l ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] sostituita dalla:
[5*] Lj(xi,yi,zi)≤0 j=1,…,m(m<3n).
Il principio delle velocità virtuali nella forma di Lagrange [4] va allora generalizzato nel senso che il momento totale o il lavoro virtuale nel caso dell'equilibrio non si annulla, ma (con ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] 3 è esprimibile in termini di (1−2qcosθ+q2)−λ, dove q=a′/a⟨1 e λ assume i valori 3/2, 5/2, 7/2, … Lagrange scrisse la precedente espressione nel prodotto di due fattori complessi:
[31] [1q(cosθ+i senθ)]-λ[1-q(cosθ-i senθ)]-λ,
dove
Usando il teorema ...
Leggi Tutto
Matematico (Tolosa 1752 - Parigi 1833). Insegnò all'École militaire, quindi (1812) succedette a Lagrange nel Bureau des longitudes, infine fu esaminatore all'École polytechnique. Fu matematico di prim'ordine, [...] ma la sua opera rimase in un certo senso offuscata da quelle di J.-L. Lagrange e di A.-L. Cauchy tra le quali, in linea storica, essa è interposta. I suoi Éléments de géometrie (1794) dominarono per parecchi decennî l'insegnamento elementare della ...
Leggi Tutto
Matematico (Parigi 1777 - ivi 1859). Prof. di analisi e meccanica all'École polytechnique, fu chiamato a succedere a Lagrange nell'Académie des sciences (1813). Particolarmente notevoli i suoi contributi [...] alla meccanica e in particolare alla dinamica dei solidi. Sono anche dovute a P. ricerche di teoria dei numeri e sulle equazioni algebriche. Classici i suoi Élements de statique (1803), fondati sulla teoria ...
Leggi Tutto
Matematica (Parigi 1776 - ivi 1831). Dopo avere studiato, giovanissima, il testo del corso di analisi di G. L. Lagrange, gli inviò talune osservazioni scritte: da ciò derivò una fruttuosa relazione scientifica. [...] Fu in corrispondenza con K. F. Gauss e con altri matematici. Dedicò un notevole impegno al teorema di P. Fermat, che non riuscì a dimostrare (e che rimane tuttora indimostrato), ma il cui studio la portò ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...