• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
Le parole valgono
lingua italiana
253 risultati
Tutti i risultati [3407]
Matematica [253]
Fisica [556]
Diritto [555]
Biografie [490]
Temi generali [308]
Medicina [228]
Filosofia [231]
Storia [215]
Chimica [175]
Diritto civile [175]

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] di analisi numeriche altamente sofisticate. Questa idea in effetti si presentò ben prima dell’avvento dei calcolatori: le leggi fisiche e matematiche formulate da Isaac Newton e dai suoi successori sembrarono poter essere il mezzo per prevedere, in ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] della forza motrice (fu forse la prima volta in cui la seconda legge newtoniana del moto fu espressa in coordinate cartesiane ortogonali) e il fattore che è stata definita "a fondamento della moderna fisica teorica" (Gutzwiller 1998, p. 613). Qui ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Logiche non standard

Enciclopedia della Scienza e della Tecnica (2007)

Logiche non standard Claudio Pizzi Alcune famiglie di logiche non standard sono costituite da logiche che sono estensioni assiomatiche di quella standard, mentre altre constano di logiche rappresentabili [...] termini che non denotano enti realmente esistenti. In tali sistemi cade la legge classica A(a/x) ⊃∃xA che, introducendo la definizione E!a=Def Roberto, La logica quantistica, in: Filosofia della fisica, a cura di Giovanni Boniolo, Milano, Bruno ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: GEORG WILHELM FRIEDRICH HEGEL – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – GOTTFRIED WILHELM LEIBNIZ – RELAZIONE DI EQUIVALENZA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] possa ottenere come un=fn(dn), essendo f e fn due opportune leggi di corrispondenza. Allora, se f è differenziabile, l'uso del (d=2) o dello spazio (d=3), molti problemi fisici si possono modellare con il seguente problema matematico: trovare una ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

Stocastica

Enciclopedia della Scienza e della Tecnica (2007)

Stocastica Mark Kac Storicamente i processi stocastici furono introdotti nel mondo della scienza (e più tardi della matematica) sotto una forma assai diversa da quella derivante dalla definizione formale [...] ν(t) le concentrazioni delle specie X e Y, rispettivamente, dalla legge dell'azione di massa segue [30] formula [31] formula. Poiché in maniera sistematica integrali nei quali compaia db(τ). In fisica è chiaro fin dall'inizio che vi è un taglio ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: COEFFICIENTE DI CORRELAZIONE – OSSERVAZIONE SPERIMENTALE – PROBABILITÀ CONDIZIONATA – FUNZIONE NON DECRESCENTE – EQUAZIONE DI DIFFUSIONE

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] punto di vista è particolarmente adatto per i metodi usati in fisica, dove l''area' può essere reinterpretata come massa o energia. è rappresentata da una curva nello spazio S. La legge che governa questa evoluzione è rappresentata da una misura ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Leggi di scala

Enciclopedia della Scienza e della Tecnica (2007)

Leggi di scala Luciano Pietronero Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] struttura dei polmoni o delle arterie. Quindi è facile rendersi conto che esistono ben definite leggi di scala non solo in molti campi della fisica, ma anche in discipline diverse come la sismologia, la meteorologia, l'economia. In generale, possiamo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – INTERNET
TAGS: DISTRIBUZIONE DI PROBABILITÀ – TEOREMA DEL LIMITE CENTRALE – GRUPPO DI RINORMALIZZAZIONE – DISTRIBUZIONE DI POISSON – DISTRIBUZIONE GAUSSIANA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] sviluppo dopo il 1870. Equazioni differenziali e integrali Numerosi fenomeni fisici, tecnici, biologici, economici, ecc., sono determinati una volta noti uno stato iniziale e una legge di evoluzione, a partire dai quali è possibile calcolare gli ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo Ivor Grattan-Guinness Matematica pura e applicata nel XVIII secolo Nel presente volume la determinazione cronologica 'Settecento' [...] piano, e le loro controparti 'baconiane' come la fisica, che comprendeva l'elettricità e le proprietà fondamentali dell'Illuminismo affermavano di essere letteralmente progressisti, e perciò leggevano la storia come una strada che puntava a loro ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] loro parti infinitesime". Si trattava, dunque, di trovare una legge di trasformazione tra due superfici (per es., tra un ellissoide fondamento di una teoria geometrica che parlasse davvero del mondo fisico in cui viviamo. Il fatto che i corpi nello ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 12 ... 26
Vocabolario
légge
legge légge s. f. [lat. lex lĕgis, prob. affine a lĕgĕre, come equivalente del gr. λέγω «dire»]. – In generale, ogni principio con cui si enunci o si riconosca l’ordine che si riscontra nella realtà naturale o umana, e che nello stesso tempo...
fìṡico
fisico fìṡico agg. e s. m. [dal lat. physĭcus, agg. e sost., gr. ϕυσικός, der. di ϕύσις «natura»] (pl. m. -ci). – 1. agg. a. Attinente alla natura o alla scienza dei fenomeni naturali: leggi f., ricerche f., fenomeni f., ecc.; geografia f....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali