In geometria, varietà algebrica del quarto ordine; in particolare, q. razionale normale è la curva dello spazio a 4 dimensioni di equazioni x1=t, x2=t2, x3=t3, x4=t4.
Le q. si distinguono in q. piane [...] sghembe (o gobbe). La q. piana è una curva piana rappresentata da un’equazione di quarto grado in x, y; un esempio è la lemniscatadiBernoulli. Il classico teorema di Steiner per le coniche si generalizza alle q. (e anzi alle curve algebriche piane ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] ) generalizzò nel 1694 la lemniscatadi Jakob I Bernoulli a curve ottenute come sezioni della superficie di un toro con piani paralleli all'asse ('ovali di Cassini'), sottolineando che si trattava di casi particolari di curve già note nell'Antichità ...
Leggi Tutto
Anatomia
Termine riferito a formazioni anatomiche o di elementi istologici disposti a s.: ganglio s. o ganglio di Corti, il ganglio situato nel canale s. dell’orecchio interno e in rapporto col ramo cocleare [...] 1 e n negativo si ha la s. di Fermat. La s. iperbolica (P. Varignon, G. Bernoulli) è la curva (fig. 2) d’equazione valori particolari di m si ottengono curve ben note: per m=1 si ottiene la retta, per m=−1 la circonferenza, per m=−2 la lemniscata, per ...
Leggi Tutto
lemniscata
s. f. [dall’agg. lemniscato]. – 1. In matematica, l. di Bernoulli ‹bernui̯ì› (o anche, assol., lemniscata), quartica razionale con un punto doppio nodale, definita anche come il luogo dei punti di un piano per i quali, assegnati...
radioide
radiòide s. m. [comp. di radi03 e -oide]. – Denominazione che si dà, nella tecnica, alle curve piane che soddisfano a particolari condizioni (di solito la relazione di proporzionalità inversa) imposte al raggio di curvatura in rapporto...