• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
218 risultati
Tutti i risultati [218]
Matematica [61]
Fisica [46]
Chimica [15]
Temi generali [17]
Analisi matematica [16]
Biologia [15]
Fisica matematica [15]
Algebra [14]
Ingegneria [11]
Storia della matematica [13]

dipendenza lineare

Enciclopedia della Matematica (2013)

dipendenza lineare dipendenza lineare caratteristica posseduta dagli elementi di un insieme {x1, …, xn}, costituito da numeri, vettori, matrici, polinomi ecc. su un campo K quando esiste una loro combinazione [...] vettori e la dipendenza lineare di n vettori ne segnala un particolare legame geometrico: per esempio, tre vettori di R3 sono linearmente dipendenti se e solo se sono complanari. Con riferimento a un intervallo, in analisi un sistema di vettori wk(x ... Leggi Tutto
TAGS: SISTEMA LINEARE OMOGENEO – EQUAZIONI DIFFERENZIALI – LINEARMENTE DIPENDENTI – COMBINAZIONE LINEARE – NUMERI RAZIONALI

rete

Enciclopedia on line

Insieme di linee, reali o ideali, che si intrecciano formando incroci e nodi e dando luogo a una struttura complessa. Più in particolare, infrastruttura tecnica per la distribuzione di un segnale (tipicamente [...] ∞2 di curve piane, ovvero di superfici nello spazio, ovvero di forme in Rn; si ottiene combinando linearmente tre elementi linearmente indipendenti (nessuno dei quali cioè appartenga al fascio individuato dagli altri due). Per solito, una r. di curve ... Leggi Tutto
CATEGORIA: BIOINGEGNERIA – ECOLOGIA – GEOMETRIA – ANATOMIA – ORGANIZZAZIONI ISTITUZIONI E SALUTE PUBBLICA – ECOLOGIA ANIMALE E ZOOGEOGRAFIA – ISTITUZIONI – FILIERE STRUMENTI E TECNICHE DELLA PRODUZIONE INDUSTRIALE – ELABORATORI – EDILIZIA – STRUMENTI E TECNOLOGIA APPLICATA – TECNOLOGIA RADIOFONICA E TELEVISIVA – TELEFONIA – TELEMATICA
TAGS: LINGUAGGIO DI PROGRAMMAZIONE – LINEARMENTE INDIPENDENTI – TRASFORMATA DI FOURIER – TRASFORMATA DI LAPLACE – PROGRAMMAZIONE LINEARE
Mostra altri risultati Nascondi altri risultati su rete (4)
Mostra Tutti

programmazione

Enciclopedia on line

Economia P. economica Il complesso degli interventi dello Stato nell’economia, realizzati spesso sulla base di un piano pluriennale (in questo senso il termine si alterna, nell’uso, con pianificazione). [...] x1, x2, …, xn essendo soggette alle condizioni, o vincoli, (con m<n) Si suppone che le equazioni siano linearmente indipendenti e, inoltre, che le condizioni [1] e [2] siano compatibili. In forma matriciale il problema può essere posto nella ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – METODI TEORIE E PROVVEDIMENTI – DIDATTICA
TAGS: COMITATO INTERMINISTERIALE PER LA PROGRAMMAZIONE ECONOMICA – METODO DEI MOLTIPLICATORI DI LAGRANGE – UNIONE ECONOMICA E MONETARIA – CONDIZIONI DI KUHN-TUCKER – LINEARMENTE INDIPENDENTI
Mostra altri risultati Nascondi altri risultati su programmazione (4)
Mostra Tutti

vettore

Enciclopedia on line

Biologia Organismo che trasporta un parassita (batterio patogeno, fungo, protozoo o virus) e lo trasferisce da un individuo (animale o Uomo) a un altro. Sono esempi comuni di v. alcuni animali ematofagi [...] vettoriali è fondamentale la nozione di base; si tratta di un insieme (non necessariamente unico) di v. c1, ..., cn linearmente indipendenti e tali che ogni v. v dello spazio si possa esprimere come loro combinazione lineare v=v1c1+ ... + v ncn. L ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – PARASSITOLOGIA – TEMI GENERALI – FISICA MATEMATICA – STRUMENTI DIAGNOSTICI E TERAPEUTICI
TAGS: CORRISPONDENZA BIUNIVOCA – LINEARMENTE INDIPENDENTI – PROPRIETÀ COMMUTATIVA – COMBINAZIONE LINEARE – GRANDEZZE VETTORIALI

combinazione

Enciclopedia on line

Biologia C. genetica Fenomeno che si verifica a ogni atto fecondativo, per cui lo zigote, riceve, dai nuclei dello spermatozoo e dell’uovo, un determinato corredo di geni, per lo più diverso da quello [...] V (o di un’algebra) definito sopra K, la c. lineare dà luogo a un nuovo elemento di K. In questo caso gli elementi u1,...,un si diranno: a) linearmente indipendenti, se nessuna loro c. lineare a coefficienti non tutti nulli è lo zero di V; b ... Leggi Tutto
CATEGORIA: BIOCHIMICA – GENETICA – CHIMICA FISICA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – ALGEBRA
TAGS: LINEARMENTE INDIPENDENTI – COEFFICIENTE BINOMIALE – SPAZIO VETTORIALE – NUMERI COMPLESSI – COMPOSTO CHIMICO
Mostra altri risultati Nascondi altri risultati su combinazione (2)
Mostra Tutti

rango

Enciclopedia on line

linguistica Il livello, il posto che un elemento linguistico occupa in una determinata serie gerarchica. In statistica linguistica, il posto che un’unità lessicale occupa in una lista di frequenza, ordinata [...] o caratteristica) di una matrice È il massimo numero delle sue righe che sono linearmente indipendenti; questo è anche il massimo numero delle colonne linearmente indipendenti, e anche il massimo ordine dei minori con determinante diverso da zero che ... Leggi Tutto
CATEGORIA: GRAMMATICA – LINGUISTICA GENERALE – SISTEMATICA E FITONIMI – ALGEBRA – SISTEMATICA E ZOONIMI
TAGS: ORDINE DEI MINORI – RETTE TANGENTI

caratteristica

Enciclopedia on line

In matematica, il termine è usato con diversi significati. In algebra la c. di un corpo K sia lo zero oppure un numero primo, p, a seconda che il sottocorpo fondamentale di K sia il campo razionale, o [...] . (o rango) di una matrice è il massimo numero delle sue righe che sono linearmente indipendenti; questo è anche il massimo numero delle colonne linearmente indipendenti, e anche il massimo ordine dei minori con determinante diverso da zero che dalla ... Leggi Tutto
CATEGORIA: ALGEBRA – TRIGONOMETRIA
TAGS: ORDINE DEI MINORI – MATEMATICA – LOGARITMO – ALGEBRA
Mostra altri risultati Nascondi altri risultati su caratteristica (1)
Mostra Tutti

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] funzione abeliana per ottenere nuove funzioni note. Il seguente esempio illustra l'operazione (P5). Siano w₁, w₂ numeri complessi linearmente indipendenti su R. Poniamo L=Zw₁+Zw₂. L è un sottogruppo del gruppo additivo C dei numeri complessi e quindi ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

GRUPPO

Enciclopedia Italiana (1933)

GRUPPO Ugo Amaldi . Termine matematico, corrispondente a un concetto che, per quanto implicito in molti ordini di questioni, anche elementari, ha trovato la sua formulazione precisa soltanto nella [...] (di ordine 0), se il sistema (15) è privo di soluzioni (all'infuori di quella costante), cioè se le (15) linearmente indipendenti per funzioni sono in numero di n. E il gruppo Gr si dice transitivo semplicemente, se il numero r dei parametri, da cui ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su GRUPPO (7)
Mostra Tutti

STATISTICA

Enciclopedia Italiana - IV Appendice (1981)

STATISTICA (XXXII, p. 506; App. I, p. 1018) Franco Giusti Bruno Grazia Resi Ludovico Piccinato Alfredo Rizzi Metodo scientifico che ha per oggetto lo studio quantitativo di fenomeni di massa, cioè [...] . Si consideri un'ipotesi del tipo H0: ϕ1 = ϕ2 = ... = ϕq = 0, dove ϕ1, ϕ2, ..., ϕq sono funzioni lineari dei parametri, linearmente indipendenti, e stimabili (cioè tali da ammettere almeno uno stimatore non distorto). Sia ora Ω il complesso delle ... Leggi Tutto
TAGS: CAMERE DI COMMERCIO, INDUSTRIA, ARTIGIANATO E AGRICOLTURA – ASSOCIAZIONE ITALIANA DI RICERCA OPERATIVA – METODO DEI MOLTIPLICATORI DI LAGRANGE – ISTITUTO CENTRALE DI STATISTICA – DISTRIBUZIONE DI PROBABILITÀ
Mostra altri risultati Nascondi altri risultati su STATISTICA (15)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 22
Vocabolario
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
wronskiano
wronskiano 〈vro-〉 agg. e s. m. – Che si riferisce al matematico polacco J. M. Wroński-Hoene (1778-1853). Determinante w., o semplicem. wronskiano, di n funzioni in una variabile x, è il determinante della matrice quadrata avente le varie righe...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali