• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
32 risultati
Tutti i risultati [80]
Matematica [32]
Fisica [45]
Fisica matematica [21]
Meccanica [20]
Meccanica quantistica [17]
Storia della fisica [15]
Meccanica dei fluidi [15]
Temi generali [12]
Analisi matematica [11]
Statistica e calcolo delle probabilita [10]

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] il funzionale T e che si possa provare, sotto opportune ipotesi sulla lagrangiana L, che T ammette minimo in C∼. 2) Forma debole della non lineare [43] formula, che interviene in meccanica quantistica (ℏ è la costante di Planck). Se cerchiamo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

momento

Dizionario delle Scienze Fisiche (1996)

momento moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] una retta (v. oltre: M. di un vettore). ◆ [MCC] M. cinetico: nella meccanica analitica, la derivata della lagrangiana di un sistema rispetto alla derivata temporale della generica coordinata lagrangiana; il nome deriva dal fatto che se per un punto s ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su momento (2)
Mostra Tutti

densita

Dizionario delle Scienze Fisiche (1996)

densita densità [Der. del lat. densitas -atis, da densus "denso"] [LSF] (a) Generic., l'esser denso, il modo più o meno compatto con cui la materia è distribuita in un corpo o in un sistema (d. materiale). [...] divisa per un'area e sua unità di misura SI è il watt a metro quadrato (W/m2); in genere, equivale a intensità della radiazione. ◆ [MCC] D. di lagrangiana: nella meccanica dei continui e nella teoria dei campi, la funzione che integrata in d3x dà la ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI PLASMI – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – GEOFISICA – MECCANICA – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su densita (3)
Mostra Tutti

PADULA, Fortunato

Dizionario Biografico degli Italiani (2014)

PADULA, Fortunato Romano Gatto PADULA, Fortunato. – Nacque a Napoli il 24 dicembre 1816 da Federico, ufficiale dell’esercito borbonico, e da Nicoletta Napoletano. Compì i suoi primi studi a Caserta, [...] via sintetica e abbracciare il nuovo metodo dell’analisi lagrangiana. La sfida che, secondo le intenzioni di Flauti 40-48), in cui corresse un errore di Navier, ed Esercizi di meccanica applicata (ibid., pp. 203-212). Nel 1843 uscirono altre due sue ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DELLE SCIENZE DI TORINO – REGNO DELLE DUE SICILIE – UNIVERSITÀ DI NAPOLI – ACCADEMIA DEI LINCEI – GEOMETRIA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su PADULA, Fortunato (1)
Mostra Tutti

velocita

Dizionario delle Scienze Fisiche (1996)

velocita velocità [Der. del lat. velocitas -atis, da velox -ocis "veloce"] [LSF] Nell'accezione più generale, con rifer. a una grandezza variabile o a un fenomeno, il termine indica un elemento atto [...] fluido in moto laminare, → attrito: A. interno. ◆ [MCC] V. di spostamento: v. meccanica dei continui: III 696 d. ◆ V. di trascinamento: (a) [MCC] in un moto a tale istante. ◆ [MCC] V. lagrangiana: quella relativa al punto di vista lagrangiano, ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su velocita (3)
Mostra Tutti

correlazione

Dizionario delle Scienze Fisiche (1996)

correlazione correlazióne [Der. del lat. correlatio -onis, comp. di cum "con" e relatio -onis "relazione" e quindi "relazione reciproca, corrispondenza fra due o più cose"] [PRB] C. a due punti: misura [...] v. solidi, transizione di fase nei: V 399 f. ◆ [MCF] C. lagrangiana: v. turbolenza: VI 363 d. ◆ [MCF] C. longitudinale: v. turbolenza: a due punti (n=2) è molto studiata; nella meccanica statistica classica in termini di essa sono calcolabili, data ... Leggi Tutto
CATEGORIA: ACUSTICA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – OTTICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: DISTRIBUZIONE DI PROBABILITÀ – COEFFICIENTE DI CORRELAZIONE – EQUILIBRIO TERMODINAMICO – TABELLA A DOPPIA ENTRATA – MECCANICA STATISTICA
Mostra altri risultati Nascondi altri risultati su correlazione (4)
Mostra Tutti

variabile

Dizionario delle Scienze Fisiche (1996)

variabile variàbile [agg. e s.f. Der. del lat. variabilis, da variare "variare"] [ANM] Di una quantità che può assumere valori in un certo insieme numerico, o, più in generale, di un simb. che rappresenta [...] : lo stesso che v. vincolata. ◆ [MCQ] V. canonica: nella meccanica classica, per un sistema a n gradi di libertà, ciascuna delle v. V. interna: lo stesso che v. di stato. ◆ [MCC] V. lagrangiana, o materiale: v. cinematica: I 598 d. ◆ [FAF] V. ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su variabile (2)
Mostra Tutti

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. connessione fra le equazioni macroscopiche della meccanica dei fluidi e l’equazione di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

Legendre Adrien-Marie

Dizionario delle Scienze Fisiche (1996)

Legendre Adrien-Marie Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] ] Trasformata di L.: la funzione risultante della trasformazione di L. (v. oltre). ◆ [ANM] Trasformazione di L.: costituisce il legame tra la formulazione lagrangiana e quella hamiltoniana della meccanica analitica: v. meccanica analitica: III 662 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – ÉCOLE POLYTECHNIQUE – COORDINATE SFERICHE – RADICI MULTIPLE – HAMILTONIANA
Mostra altri risultati Nascondi altri risultati su Legendre Adrien-Marie (3)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i , calcolo delle: VI 470 b. ◆ [ANM] Parentesi di L.: v. meccanica analitica: III 660 b. ◆ [ANM] Polinomio d'interpolazione di L.: v. ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti
1 2 3 4
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocità
velocita velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali