RELATIVITÀ
Christian Moller
Tullio Regge
Eugenio Garin
Relatività di Christian Møller
sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] equazioni del moto che seguono dal principio variazionale (64) definiscono una classe di curve nello spaziotempo, chiamate geodetiche:
In una metricariemanniana le geodetiche fissano il percorso di lunghezza minima tra due punti assegnati. In una ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] R.-Christoffel (v. oltre). ◆ [RGR] Tensore di R.: tensore del quarto ordine che si associa a una varietà Mn dotata di metricariemanniana; l'annullarsi del tensore di R. equivale al fatto che Mn sia piatta, ossia che in essa si possa introdurre una ...
Leggi Tutto
riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] retta complessa è il piano della variabile complessa, o piano sfera oppure la superficie di una sfera; in modo analogo si può definire la r. di una superficie. ◆ [RGR] [ALG] Varietà r.: varietà sulla quale si sia stabilita una metricariemanniana. ...
Leggi Tutto
metricamètrica [s.f. dall'agg. metrico] [ALG] Generalizzazione, per un insieme astratto, del concetto di misura della distanza dell'ordinario spazio euclideo (v. oltre), consistente in una funzione [...] : VI 500 c, d. ◆ [RGR] M. lorentziana: v. varietà riemanniane: VI 497 e. ◆ [ALG] M. proiettiva: m. che si può introdurre in uno spazio proiettivo in modo da renderlo uno spazio metrico; essa si assegna fissando l'assoluto, ossia un'ipersuperficie ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] estendere a spazi arbitrari le classiche proprietà metriche degli spazi euclidei: v. varietà riemanniane. ◆ [RGR] V. riemanniana isotropa: v. cosmologici, modelli: I 804 c. ◆ [RGR] V. riemanniana massimalmente simmetrica: v. cosmologici, modelli: I ...
Leggi Tutto
geodetica
geodètica [s.f. dall'agg. geodetico] [RGR] G. affine: v. gravitazionale, moto relativistico: III 89 e. ◆ [RGR] G. di tipo tempo: v. buco nero: I 387 f. ◆ [ALG] G. di una superficie: linea tracciata [...] stesso che g. tipo luce (v. oltre). ◆ [RGR] G. tipo luce, o g. nulla: v. buco nero: I 387 e. ◆ [ALG] Equazione delle g.: v. varietà riemanniane: VI 501 f. ◆ [ALG] Equazione delle g. per la metrica conforme: v. fluidodinamica relativistica: II 660 d. ...
Leggi Tutto
metricomètrico [agg. (pl.m. -ci) Der. del gr. metrikós, da métron "misura"] [ALG] Relativo a una metrica, cioè al concetto di misura della distanza in uno spazio. ◆ [MTR] (a) Che concerne una misurazione [...] , l'ordinaria geometria euclidea e, in campo più elevato, la geometria riemanniana. ◆ [ELT] Onde m.: le onde radio la cui lunghezza d 2.1. ◆ [ALG] Proprietà m.: proprietà derivanti da una metrica. ◆ [ALG] Questioni m., o problemi m.: questioni che, a ...
Leggi Tutto
minkowskiano
minkowskiano 〈minkofskiano〉 [agg. Der. del cognome di H. Minkowski] [RGR] Metrica m.: lo stesso che metrica di Minkowski: → Minkowski, Hermann. ◆ [ALG] [RGR] Sistema di riferimento m. locale: [...] sistema di riferimento in un punto di una varietà riemanniana tale che il suo tensore metrico è il tensore minkowskiano. ◆ [ALG] [RGR] Tensore m.: tensore metrico diagonale con elementi sulla diagonale (1, -1, -1, -1). ...
Leggi Tutto
metrica
mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...