• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
diritto
il chiasmo
Le parole valgono
lingua italiana
328 risultati
Tutti i risultati [5711]
Matematica [328]
Diritto [776]
Biografie [676]
Storia [459]
Fisica [428]
Economia [388]
Temi generali [381]
Medicina [285]
Arti visive [249]
Geografia [214]

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] di una coppia di particelle, come si vede nella fig. 22A, appare come una ‛coppa', ovvero una curva con un minimo a un determinato istante. Ma può anche accadere che due particelle si annichilino a vicenda: nello spazio-tempo tridimensionale la ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] sottoinsiemi, che valga 0 sui singoletti, 1 sull'insieme totale, e sia numerabilmente additiva (condizione invero equivalente, per il minimo eventuale di tale insieme, di cardinalità k, alla k-additività). Se la misura sui sottoinsiemi di k non ha ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria Emily Grosholz La rivoluzione cartesiana e gli sviluppi della geometria La rivoluzione [...] algebrica. Se l'equazione è a una sola incognita, deve verificare se è irriducibile; altrimenti deve ridurla al minimo grado possibile e quindi riscriverla in una forma campione, per determinare quale sia la costruzione standard delle radici per ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] e Henri-Léon Lebesgue. Essi accettavano insiemi numerabilmente infiniti e l'iterazione transfinita di costruzioni fino al minimo ordinale non numerabile. I semiintuizionisti non accettavano l'assioma di scelta, che era però inevitabilmente presente ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] Sperimentalmente si osserva solo un numero finito di massimi e minimi e questo sembra essere in contrasto con la teoria, un gas di Knudsen, mostra che il numero medio di massimi e minimi per unità di tempo è dell'ordine di grandezza del numero di ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

La civiltà islamica: antiche e nuove tradizioni in matematica. Aritmetica

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. Aritmetica Pascal Crozet Aritmetica Se ciò che in questa sede intendiamo per aritmetica si ricollega in generale al calcolo con quantità [...] denominatore. Se presso al-Uqlīdisī il denominatore comune è ancora semplicemente il prodotto dei denominatori, la ricerca del minimo comune multiplo diventerà rapidamente, come in Abū 'l-Wafā᾽, al-Karaǧī o al-Baġdādī, il procedimento principale per ... Leggi Tutto
CATEGORIA: ARITMETICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] 1]. Monge studiò nel 1784 le curve sulla superficie che, in ogni punto, hanno la direzione della massima (o rispettivamente minima) curvatura e stabilì che si determinano due fasci di curve che si tagliano ortogonalmente in ogni punto della curva. Il ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] detta "cascade") delle derivate di un polinomio f, determinate in modo puramente algebrico, e concludeva geometricamente che tra un minimo negativo e un massimo positivo doveva necessariamente trovarsi uno zero di f. Quello che oggi va sotto il nome ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] di Hilbert, cioè per dimostrare che il problema variazionale assiociato al funzionale F: con u=φ su ∂Ω ha un minimo liscio purché F sia liscia e la corrispondente equazione di Euler-Lagrange sia uniformemente ellittica. Questo risultato completò il ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] ∞; la non riflessività di W1,1(Ω) è alla origine delle grandi difficoltà che si incontrano nella teoria delle superfici minime. Si può osservare, in base a quanto esposto finora, che si perde molto in generalità passando dai problemi delle equazioni ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 32 33
Vocabolario
mìnimo
minimo mìnimo agg. e s. m. (f. -a) [dal lat. minĭmus, superl. di minor «minore»; v. meno]. – Piccolissimo, il più piccolo. Funge da superlativo di piccolo (come il lat. minĭmus rispetto a parvus) e si contrappone direttamente a massimo. 1....
mìnima
minima mìnima s. f. [femm. sostantivato dell’agg. minimo, per ellissi da semibreve minima]. – Figura musicale di durata equivalente a una metà della semibreve, introdotta nella notazione nel sec. 14°.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali